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Abstract

This work presents a new method to transform omnidirectional images based on a combination of Moebius
transformations in the complex plane and Gaussian weights that limit the action of these mappings to regions of
interest. Since no optimization or numerical methods are involved, it is possible to reach real-time performance
with the method, making it applicable to streaming services. The results show the potential of this technique
for areas such as surveillance and art in general.

1 Introduction

An omnidirectional image is an image that contains the visible information of the full spherical field of view around
a point. Omnidirectional images became popular on the Internet and have been an intense research topic during
the last twenty years. Due to distortions caused by planar parametrizations, they contain undesirable artifacts such
as bent lines, shape distortions and oversampling near the poles. This work presents a new method to improve
these images, making them more visually pleasing and allowing more technical uses of them.

A multitude of application areas can benefit from the visible information contained in omnidirectional images:
they provide a greater immersive experience in virtual reality contexts, making the user able to look around and
zoom in specific regions of the scene; in surveillance they may increase the effectiveness of security cameras; in
sport broadcasting they are able to show greater areas of the game and of the audience without requiring camera
movements; and in artistic applications they offer several new ways of filming and editing footage of prerecorded
scenes. For these reasons, working to generate improvements and corrections of omnidirectional images has great
potential to improve the contact that humanity possesses with these types of technology and applications.

Our method presents an extension of the work done in [4], where the authors projected the spherical image in the
complex plane using the stereographic projection and then and applied a particular case of Moebius Transformations
to the complex plane. In our case we use general Moebius transformations that have the expression M(z) = az+b

cz+d .
Based on the cross-ratio relation we enable the user to define the transformation using three points and their images.
Additionally, we give the user the possibility of defining which regions of the image will be affected through the use
of smooth weights that are higher on the regions of interest, generating a user interface with higher functionality.
Another possibility of our method is to compose a sequence of transformations on the same image, allowing an even
greater variety of results.

Since we use closed-form simple transformations, our approach allows us to generate real-time results for
megapixel images and opens the possibility of adding this method to streaming equipments.

The text is structured as follows. In section 2 we discuss previous works and the literature in the area of
wide-angle images. Section 3 formalizes the idea of an omnidirectional image and introduce the longitude/latitude
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parametrization. Section 4 focuses on the foundations of Moebius Transformations and how they relate to spherical
images. Section 5 focuses on how smoothing functions can provide a way for a Moebius Transformation to act locally.
In section 6 we present the results and limitations of our technique. Section 7 briefly explains our implementation.
In section 8 we make concluding remarks and discuss future ideas.

2 Related Work

The goal of correcting omnidirectional images has been a theme of intense research during the last twenty years.
The most evident distortions present in these images are straight lines in the world appearing bent and objects
appearing too stretched. The seminal work [8] showed that it is impossible to find a mapping from the sphere to
the image plane that simultaneously preserves both all possible straight lines and objects.

Many mappings from the sphere to the plane were considered for the task of correcting these distortions. For
example, the stereographic projection that identifies the sphere with the extended complex plane and the Mercator
projection from cartography books are well known to preserve shapes but they bend straight lines. [5] presents an
extensive discussion about these projections and shape preservation (also known as conformality). On the other
hand, the perspective projection preserves straight lines but stretches objects too much if the field of view is too
wide.

The limitations of these global projections and the impossibility of preserving all desired properties led to
content-based methods that rectify panoramic images depending on each scene. For example, [7] proposed to use
multiple perspective projections to the same image. This method works well as long as the orientation discontinuities
introduced by the multiple projection planes are well hidden by the scene.

More sophisticated methods such as [1] and [3] formulate optimization problems that have the goal of satisfying
user specified constraints. They produce high-quality results at the cost of solving large optimization problems
that make their use prohibitive for real-time applications. On the contrary, we propose a method based on closed
formulas that can generate results in real-time.

Our method apply Moebius transformations to panoramic images. This idea has already been explored in [4]
and [6]. [4] limits the discussion to contractions and expansions in the complex plane with the goal of zooming
in and out panoramic images. [6] includes rotations and apply their method to videos as well. We generalize this
approach by allowing more general Moebius transformations, introducing their specification by the definition of the
images of 3 points, and adapting them to act locally.

3 Omnidirectional Images

In this work all the scene observed from a fixed viewpoint is modeled as a unitary sphere centered at the viewpoint
(S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1}), where every point on the sphere has an associated color, the color that is
seen when someone looks through this point. For convenience, it is assumed that the origin of R3 is the viewpoint.

This colored sphere is called visible sphere or omnidirectional image. Notice that the visible sphere fully repre-
sents the field of view with 360◦ longitude by 180◦ latitude.

A well-known and useful representation of the sphere S2 is by longitude and latitude coordinates:

r : [−π, π]×
[
−π
2
,
π

2

]
→ S2

(λ, φ) ⇐⇒ (cosλ cosφ, sinλ cosφ, sinφ)

This representation is illustrated in Figure 1.
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Figure 1: Longitude/latitude representation r

The longitude/latitude domain is equirectangular domain. The images in the equirectangular domain are called
equirectangular images and the will be the input of our algorithm. An example of equirectangular image is shown
in Figure 2.

4 Moebius Transformations

It is well known that the complex plane can be identified as the unit sphere (in our case, the visible sphere) via the
stereographic projection [2]. Figure 3 illustrates this mapping. Identifying the point from where lines of projection
emanate from as ∞, we obtain a continuous mapping SP : S2 → C∞ = C ∪ ∞ that has a continuous inverse
mapping SP−1 : C∞ → S2. An important property of the stereographic projection is its conformality (formal
definition and details in [5]), i.e., it preserves angles and maps circles to circles or lines. This way of interpreting
the extended complex plane C∞ as a sphere was formulated by Riemann and receives the name of Riemann Sphere.
In our work, we will consider the visible sphere as being a Riemann sphere with ∞ being the opposite point to the
projection plane.

Definition 1. A mapping S : C∞ → C∞ in the form S(z) = az+b
cz+d is called a fractional linear transformation. If

a, b, c and d satisfy ad− bc 6= 0 then S is called a Moebius Transformation.

If S is a Moebius Transformation, so S−1(z) = dz−b
−cz+a satisfies S ◦ S−1(z) = S−1 ◦ S(z) = z; That is, S−1 is the

inverse mapping of S. If S and T are both fractional linear transformations, so it follows that S ◦ T is too. Hence,
the set of Moebius mappings constitute a group under composition. This work will treat only about fractional
linear transformations that are Moebius Transformations.

Some properties that follows from these definitions are useful for our work:

Proposition 1. If S is a Moebius Transformation, then S is a composition of translations, scalings and inversions.
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Figure 2: Example of equirectangular image.

Figure 3: The Relation between a Riemann sphere and the extended complex plane

Proof. First, suppose c = 0. Then S(z) = (a/d)z + b/d. so if S1(z) = (a/d)z (scaling), S2 = z + b/d (translation),
then S2 ◦ S1 = S and the results is proven.
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Now, take c 6= 0 and make S1(z) = z+ d/c (translation),S2(z) = 1/z (inversion) ,S3(z) = (bc−ad)
c2 z (scaling and

rotation) and S4(z) = z + a/c (another translation). Then S = S4 ◦ S3 ◦ S2 ◦ S1.

Proposition 2. The Moebius Transformations are bijections in C∞.

Proof. The translation z → z + k, ∞→∞ is a bijection with inverse z → z − k, ∞→∞.
If k 6= 0, then the scaling z → kz, /,∞→∞ is a bijection with inverse z → z/k, ∞→∞. Notice that the scaling

S3(z) = (bc−ad)
c2 z in the proof of the previous proposition is such that k = (bc−ad)

c2 6= 0, since ad− bc 6= 0.
The inversion z → 1/z, 0→∞, ∞→ 0 is a bijection with itself being its inverse.

According to the previous proposition and the fact that compositions of bijections are bijections, we conclude
that Moebius transformations are bijections.

Definition 2. z ∈ C∞ is a fixed point of S if
S(z) = z

From the definition we have that the fixed points of a Moebius Trasformation M(z) are the solutions of

z = M(z) =
az + b

cz + d

The equation can be rewritten in the following form

cz2 + (d− a)z − b = 0

So, Moebius transformations possess at most two fixed points or are the identity transformation (the latter happens
only if a = d, b = 0 and c = 0).

Now, let S be a Moebius transformation and take p, q, s distinct points in C∞ with p̄ = S(p), q̄ = S(q), s̄ = S(s).
Suppose that T is another mapping with this property. Then T−1 ◦ S = I, i.e., S = T . Hence, a Moebius mapping
is uniquely determined by its action over any three distinct points in C∞.

Let z1, z2, z3 points in C∞. Define S : C∞ → C∞ by

S(z) =

(
z − z2
z − z3

)/(
z1 − z2
z1 − z3

)
if z1, z2, z3 ∈ C;

S(z) =
z − z2
z − z3

if z1 =∞;

S(z) =
z1 − z3
z − z3

if z2 =∞;

S(z) =
z − z2
z1 − z2

if z3 =∞.

In any case S(z1) = 1, S(z2) = 0, S(z3) =∞ and S is the only transformation with this property.

Definition 3. If z ∈ C∞, then (z, z1, z2, z3) (the cross ratio of z, z1, z2 and z3) is the image of z under the unique
Moebius Transformation that maps z1 to 0, z2 to 1 and z3 to ∞.

I.e.

M(z) =
(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
if M(z1) = 0, M(z2) = 1, M(z3) =∞.
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Proposition 3. If z1, z2, z3 are distinct points in C∞ and T is a Moebius Transformation and T (zi) = wi, i =
1, 2, 3. Then

(z, z1, z2, z3) = (w, w1, w2, w3) ∀z ∈ C∞.

Proof. Let S(z) = (z, z1, z2, z3); then S is a Moebius mapping. If M = S ◦ T−1, then M(w1) = 0, M(w2) =
1, M(w3) = ∞; hence, S ◦ T−1(z) = (z, w1, w2, w3)∀z ∈ C∞. In particular, if z = w, and the desired result
follows.

Proposition 4. If z1, z2, z3 are distinct points in C∞ and w1, w2, w3 are distinct points in C∞ too, then there is
one and only one Moebius Transformation S such that S(z1) = w1, S(z2) = w2, S(z3) = w3.

Proof. Let T (z) = (z, z1, z2, z3), M(z) = (z, w1, w2, w3) and let S = M−1 ◦ T . Clearly S has the desired property.
If R is another Moebius mapping, with R(zj) = wj for j = 1, 2, 3 then R−1 ◦ S has three fixed points (z1, z2, z3).
Hence, R−1 ◦ S = I, or S = R.

From the definition and the properties above, we can say that, for any distinct zi, wi ∈ C∞, i = 1, 2, 3, there is
one, and only one, Moebius Transformation M , such that

M(zi) = wi); and
(w − w1)(w2 − w3)

(w − w3)(w2 − w1)
=

(z − z1)(z2 − z3)

(z − z3)(z2 − z1)

With all these results, we have a way to calculate the coefficients of a Moebius Transformation defined by three
points and their images, as proven in the next proposition.

Proposition 5. Given a Moebius Transformation M(z) = az+b
cz+d , where wi = M(zi) for i = 1, 2, 3, we have:

a = det

w1z1 w1 1
w2z2 w2 1
w3z3 w3 1

 , b = det

w1z1 z1 w1

w2z2 z2 w2

w3z3 z3 w3

 ,

c = det

z1 w1 1
z2 w2 1
z3 w3 1

 , d = det

w1z1 z1 1
w2z2 z2 1
w3z3 z3 1

 .

Proof. We can rewrite the equation of Moebius Transformation M on the following form. Taking w = M(z) we
have

cwz − az + dw − b = 0

We know that the equation passes through the pair of points (zi, wi) and in an arbitrary pair (z, w), so, we can
set up the following linear system.

cwz − az + dw − b = 0

cw1z1 − az1 + dw1 − b = 0

cw2z2 − az2 + dw2 − b = 0

cw3z3 − az3 + dw3 − b = 0

Rewriting in matrix form, we have 
wz −z w −1
w1z1 −z1 w1 −1
w2z2 −z2 w2 −1
w3z3 −z3 w3 −1



a
b
c
d

 =


0
0
0
0


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As we do not want the trivial solution, then

det


wz −z w −1
w1z1 −z1 w1 −1
w2z2 −z2 w2 −1
w3z3 −z3 w3 −1

 = 0

Doing cofactor expansion over this determinant in the first line, we get

wz · det

−z1 w1 −1
−z2 w2 −1
−z3 w3 −1

+ z · det

w1z1 w1 −1
w2z2 w2 −1
w3z3 w3 −1



+w · det

w1z1 −z1 −1
w2z2 −z2 −1
w3z3 −z3 −1

+ det

w1z1 −z1 w1

w2z2 −z2 w2

w3z3 −z3 w3

 = 0

Organizing the signals

wz · det

z1 w1 1
z2 w2 1
z3 w3 1

− z · det

w1z1 w1 1
w2z2 w2 1
w3z3 w3 1


+w · det

w1z1 z1 1
w2z2 z2 1
w3z3 z3 1

− det

w1z1 z1 w1

w2z2 z2 w2

w3z3 z3 w3

 = 0

Since the equation
0 = cwz − az + dw − b

also holds, we can equate the coefficients of these expressions to obtain

c = det

z1 w1 1
z2 w2 1
z3 w3 1

 , a = det

w1z1 w1 1
w2z2 w2 1
w3z3 w3 1

 ,

d = det

w1z1 z1 1
w2z2 z2 1
w3z3 z3 1

 , b = det

w1z1 z1 w1

w2z2 z2 w2

w3z3 z3 w3

 .

Before we continue, we need to establish some notation for a better understanding of the transformations. As
our algorithm works like a black box, just needing the initial and final points, the natural notation for a Moebius
Transformation is the following:

T : [z1, z2, z3]→ [w1, w2, w3], z1, z2, z3, w1, w2, w3 ∈ E

This notation says that T is the Moebius Transformation in C∞ that maps zi ∈ E to wi ∈ E, where E notates the
equirectangular domain.

The method works in the following form: we ask the user to specify initial and final positions of three points
in the input image. Applying inverse equirectangular projection, we map the image and these coordinates to the
visible sphere and then we project the sphere to the complex plane using stereographic projection. Therefore, using
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Figure 4: Scheme of the method. (4a) Map the equirectangular image to the sphere; (4b) Project to the complex
plane using stereographic projection; (4c) Apply the Moebius Transformation; (4d) Return to the sphere and project
back to the equirectangular domain.

proposition 5 and the prescribed points, we define a Moebius Transformation and apply it over the image. Using
inverse stereographic projection we map the transformed image to the sphere and project back to the equirectangular
domain. Figure 4 shows the idea schematically.

If C = 0 in the general Moebius Transformation M(z) = Az+B
Cz+D then M(z) = Az + B. If we write A = ρeiα,

then it can be viewed as a composition of an origin-centered rotation by α, an origin-centered expansion by ρ and
a translation by B. These transformations can be viewed on the Riemann sphere Σ in Figure 5.

Figure 5: Canonic Moebius Transformations in the Riemann sphere Σ.

With α 6= 0, Figure 5a illustrates that the rotation z → eiαz in C∞ induces a rotation of Σ about the vertical
axis through its centre. Horizontal circles on Σ rotate into themselves and are therefore called invariant curves of
the transformation. This pure rotation is an example of an elliptic Moebius Transformation. Figure 6 show us an
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example of an image in the equirectangular domain rotated by a elliptic Moebius Transformation.

(a) (b)

Figure 6: An example of elliptic Moebius Transformation. (6b) the result of a rotation by 10◦ degrees (T :
[(−0.3 0), (0 0), (0.3 0)]→ [(−0.2954 − 0.0521), (0 0), (0.2954 0.0521)]).

If ρ > 1, Figure 5b illustrate the transformation on Σ induced by a corresponding origin-centered expansion in
C∞, z → ρz. If ρ < 1, then we have a contraction of C∞, this time, the invariant curves are the great circles through
the fixed points at the poles. This pure expansion is an example of hyperbolic Moebius Transformation. This is
the kind of transformation explored in [4], which has an effect of changing the field of view in the sphere. Figure 7
show us an example of images in the equirectangular domain scaled by a hyperbolic Moebius Transformation.

Figure 5c illustrates the combined effect of rotation and expansion. The invariant curves are the illustrated
“spirals”. This combination is an example of a loxodromic Moebius Transformation. Figure 8 shows an example of
loxodromic Moebius Transformation in complex plane.

Finally, Figure 5d illustrates a translation. Since the invariant curves in C∞ are the family of parallel lines
in the direction of the translation, the invariant curves on Σ are the family of circles whose common tangent at
∞ is parallel to the invariant lines in C∞. Since ∞ is the only fixed point, a pure translation is an example of a
parabolic Moebius Transformation. Figure 9 shows the result of a translation in the complex plane. (Obs: the high
non-linearity of stereographic projection makes a different effect than a simple translation).

Figure 10 shows how the specification of three points can be used to rectify lines that are straight in the world
but appear curved in the equirectangular image.

5 Local Moebius Transformations

The method we have just presented affects all the equirectangular image, as can be seen in Figure 10b. For localized
manipulations such as line rectification or local zoom, it is desired the Moebius transformation to affect only regions
of interest. In this section, we introduce a new method to apply Moebius Transformations locally.

From the grid of pixels positions of a given image A, X for the x-position and Y for the y-position, we produce
a new image B using the method in the previous section, with a new grid of pixels positions U and V, respectively.
Then, we get the difference of positions U −X = ∆U and V − Y = ∆V . Therefore, we apply a smoothing function
F(X,Y) over ∆U and ∆V , generating a smooth repositioning of pixels ∆U and ∆V . Then we add these new
differences to the original image, getting U = X + ∆U and V = Y + ∆V . Interpolating the pixels to these new
positions, we get a new image B with a localized Moebius Transformation.
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(a) (b)

(c) (d)

Figure 7: An example of hyperbolic Moebius Transformation. (7b) the result of a scaling by 3 (T :
[(−0.304 0), (0 0), (0.304 0)] → [(−0.7521 0), (0 0), (0.7521 0)]); (7d) the result of a scaling by 0.5 (T :
[(−0.304 0), (0 0), (0.304 0)]→ [(−0.1497 0), (0 0), (0.1497 0)]).

In our MATLAB GUIDE R© implementation, the chosen smoothing function was a general 2-D gaussian function

G(x, y) = A · exp (−α(x− x0)2 − 2β(x− x0)(y − y0) + γ(y − y0)2))

where

α =
cos2 θ

2σ2
x

+
sin2 θ

2σ2
y

, β =
sin 2θ

4σ2
x

− sin 2θ

4σ2
y

and γ =
sin2 θ

2σ2
x

+
cos2 θ

2σ2
y

.

In the interface, the user specifies the parameter of some elliptical region centered in (x0, y0) with axis of the value
Rx = 2σx and Ry = 2σy and with a θ counterclockwise rotation, this region will be affected by a gaussian function
with amplitude 1, generating a smooth dissipation of the Moebius Transformation specified by 3 input/output
coordinates. The Figure 11 shows a comparison between the two methods. The next sections will discuss how
obtain these results and the features of the interface.

6 Results and Limitations

Now, we present some results and discuss them and the limitations of our method.
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(a) (b)

(c) (d)

Figure 8: An example of loxodromic Moebius Transformation. (8d) the result of a rotation by 10◦ degree
and a scaling by 2.5 (T1 : [(−0.3 0), (0 0), (0.3 0)] → [(−0.2954 − 0.0521), (0 0), (0.2954 0.0521)]) (T2 :
[(−0.304 0), (0 0), (0.304 0)]→ [(−0.7175 0), (0 0), (0.7175 0)]).

(a) (b)

Figure 9: An example of parabolic Moebius Transformation. (9b) the result of a translation by 0.8 in complex
plane (T : [(−0.304 0), (0 0), (0.304 0)]→ [(0.444 0), (0.727 0), (0.985 0)]).

First of all, we have line rectification without affecting undesired regions of the image. The most effective
approach consists in selecting the region with a narrow gaussian, with two fixed points and a free point, mostly the
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(a) (b)

Figure 10: Line rectification with Moebius Transformation. 10b The result of line rectification (T :
[(−1.06 0.32), (1.08 0.32), (0 0.6)]→ [(−1.06 0.32), (1.08 0.32), (0 0.32)]

(a) (b)

Figure 11: Comparison between methods. (11a) The result of global method (T :
[(−1.06 0.32), (1.08 0.32), (0 0.6)] → [(−1.06 0.32), (1.08 0.32), (0 0.32)]; (11b) The result of local method
(T : [(−1.06 0.3), (1.08 0.32), (0 0.7)] → [(−1.06 0.3), (1.08 0.32), (0 0.42)], C = (0.01 0.45), Rx = 2, Ry = 0.56, θ =
0).

point in the middle. Figure 12 show us an example:
This approach have some limitations. When the image possess too much information around the line, the

rectification causes inappreciable distortions, as can be seen in Figure 13b.
When the line to be rectified is too long, the smoothness of the function causes incomplete rectification, as you

can see in Figure 14b. A way to work around this issue is to make successive transformations over the line, but this
fixing requires more work from the user as well. The result in Figure 14d illustrates this point.

Now we present the application of zooming in and out without affecting undesired regions. This application can
be useful for security footage to identify the suspect without compromising the other regions covered by the camera.
An effective approach to perform a zoom specifying three points is move two points away from the region to be
zoomed while maintaining a fixed point. Another way is setting a triangle with the three points over the region to
be affected, and move them away. Zoom out can be achieved in a similar way, making points closer. Figure 15,
show us an example of local zoom.
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(a) (b)

(c) (d)

Figure 12: An example of line rectification with local Moebius Transformation. (T1 :
[(−0.88 0.46), (0.99 0.56), (0.02 0.76)] → [(−0.88 0.58), (0.99 0.56), (0.08 0.62)], C = (0.08 0.75), Rx = 1.6, Ry =
0.40, θ = 0); (12c) (T2 : [(−2.40 0.33), (−0.9 0.45), (−1.4 0.6)] → [(−2.40 0.33), (−0.9 0.45), (−1.42 0.46)], C =
(−1.21 0.48), Rx = 0.8, Ry = 0.40, θ = 0); (12d) The final result (T3 : [(0.88 0.5), (2.6 0.52), (1.66 0.72)] →
[(0.88 0.5), (2.6 0.52), (1.66 0.5)], C = (1.66 0.7), Rx = 1.45, Ry = 0.31, θ = 0).

(a) (b)

Figure 13: Limitation in line rectification. (13b) a bad result (T : [(−3.1 1), (−1.4 0.2), (−2.2 0.99)] →
[(−3.1 1), (−1.4 0.2), (−2.16 0.66)], C = (−2.34 0.82), Rx = 1.1, Ry = 2.04, θ = −0.4)
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(a) (b)

(c) (d)

Figure 14: An example of bigger line rectification with local Moebius Transformation. (14b) Incorrect result
(T1 : [(−1.26 0.4), (1.2 0.32), (0 0.84)] → [(−1.26 0.4), (1.2 0.32), (0 0.37)], C = (0.04 0.48), Rx = 1.52, Ry =
0.64, θ = 0); (14c) (T2 : [(−1.3 0.38), (−0.1 0.38), (−0.76 0.54)] → [(−1.3 0.36), (−0.1 0.38), (−0.72 0.38)], C =
(−0.8 0.48), Rx = 0.8, Ry = 0.4, θ = 0) (14d) Better result (T3 : [(0 0.36), (1.2 0.3), (0.85 0.4)] →
[(0 0.36), (1.22 0.34), (0.85 0.375)], C = (0.8 0.4), Rx = 0.45, Ry = 0.32, θ = 0).

Another result that can be useful for security footage is the translation of an object near the poles of the sphere
to the equatorial region, assisting the recognition of too much distorted objects or people. One limitation of this
result is the pixeling in the image. This occurs because the points in the poles are too close together. So, for
a better visualisation, it is recommended the use of high resolution images, what can be a practical limitation.
Fish-eye cameras have better resolutions near the poles, so the problem of pixeling can be avoided. The example
in Figure 16 used a 2048x1024 image. Another way of helping the recognition is zooming out the center of the
image (an hyperbolic transformation) in such a way that pixels near the poles come closer and then zooming in the
object. This approach will cause high distortion, so, we apply a correction using a 2 fixed point rotation. A good
point of this second approach is that it does not require a high resolution (we used a 2048x1024 image, that can
be computed in almost real time). Figure 17 show us a step-by-step result of this approach over the same image of
the previous example.

To conclude the result section we present the side effects of zooming in and zooming out on final quality of the
image. Figure 18 shows an example of these effects. The first part of the test was done performing a contraction
around the central points, then restoring to the initial positions. The greater the contraction, the greater is the loss
of image information around the central points. The chosen contraction values are k1 = 0.5, k2 = 0.3, k3 = 0.15.
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(a) (b)

Figure 15: Zoom in (T1 : [(−1.1 − 0.3), (−0.6 − 0.3), (−0.86 0)]→ [(−1.3 − 0.5), (−0.4 − 0.5), (−0.86 0.44)], C =
(−0.86 − 0.22), Rx = 0.28, Ry = 0.3, θ = 0, T2 : [(2.5 − 0.3), (2.9 − 0.3), (2.7 0)] → [(2.1 − 0.6), (3.1 −
0.6), (2.7 0.6)], C = (2.7 − 0.2), Rx = 0.2, Ry = 0.32, θ = 0).

(a) (b)

Figure 16: Recognition of very distorted objects. (T : [(0 − 1.5), (0.3 − 1.5), (0.6 − 1.5)] → [(0 − 1), (0.3 −
1), (0.6 − 1)], C = (0 0), Rx =∞, Ry =∞, θ = 0).

The second part was done by doing an expansion around central points, then restoring to the initial positions. The
greater the expansion, the greater is the loss of image information at the peripherals points. The chosen expansion
values are k4 = 2.7 and k5 = 5.0. The result was generated using an 2048x1024 equirectangular image.
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(a) (b)

(c)

(d)

Figure 17: Recognition of very distorted objects (The transformations parameters are in the images).

7 Implementation Features

We now discuss the features of our implementation in MATLAB GUIDE R©. A screen shot of the interface is
available in Figure 19.
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(a) (b)

(c) (d)

(e) (f)

Figure 18: (18a) Original Image; (18b) Contraction by k1 = 0.5; (18b) Contraction by k2 = 0.3; (18c) Contraction
by k3 = 0.15; (18d) Expansion by k4 = 2.7; (18e) Contraction by k5 = 5.0.

In the upper half of the interface, we have the button “Input Image” that loads the initial image to be worked.
The button “Load Log” loads a .dat text file that stores the transformations. This button allows the user to continue
the project at another time, without needing to set all the transformations again. The red, green and blue input
points spaces for coordinates allows the user to write x and y coordinates in the equirectangular domain for every
point. The buttons “Up”, “Down”, “Left”, Right add a 0.02 (or −0.02) increment to the coordinates, allowing fine
adjusts. The selection box “Show points” allows hiding and showing the input points in the initial image, for a
better visualization of the transformation.
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Figure 19: in red: Input image button; in blue: load log button; in green: spaces for x and y coordinates of input
points; in yellow: Right, Left, Up and Down buttons; in pink: Show points box.

In the middle of the interface we have the pop-up button that allows changing the current transformation, with
a maximum of ten transformations. It updates the upper and the lower images as well, where the upper image is
the result of the previous transformation and the lower image is the result of the current transformation. Right
below, we have another pop-up button that allows changing the smoothing function. In our prototype we have
only the Gaussian function as smoothing function, other functions will be added in the future. The select box
“Show function” allows hiding and showing the smoothing function in the initial and the result image, for a better
visualization of the transformation. The select box “show displacement vectors” fills the result image with vectors
showing how the pixels moved with the transformation(as you can see in Figure 20). The ten select boxes Ti allow
the user choose what transformations will be applied over the image. The transformations of this method are not
commutative, so if a transformation affects the same region of a previous transformation, unchecking the previous
transformation may cause undesired results. We have the space for defining the coordinates of the center of the
smoothing function, as well as the radius of it and the angle of rotation. The “Up”, “Down”, “Left” and “Right”
buttons works in the same way as the previous buttons.

In the lower half of the interface, we have the red, green and blue output points spaces for coordinates, allowing
the user to write u and v coordinates for every point. The buttons “Up”, “Down”, “Left” and “Right” works just
like the others. The select box “Show points” allows hiding and showing the output points in the result image. The
last button “Save result” saves the current result image and a .dat file with all the transformations parameters.
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Figure 20: in red: current transformation pop-up button; in blue: smoothing function pop-up button; in green:
Show function box; in yellow: show displacement vectors box; in pink: Ti boxes; in orange: Center coordinates of
smoothing function, Rx, Ry and θ, respectively; in cyan: Right, Left, Up and Down buttons.

Figure 21: in red: spaces for u and v coordinates of output points; in blue : Right, Left, Up and Down buttons; in
green: Show points box; in yellow: Save result button.
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8 Conclusion

The proposed method allows a high degree of freedom for processing omnidirectional images. We have been able to
provide a way to improve such images, which, along with the idea of combining transformations in an intuitive way,
leaves their use in a very accessible manner for people who are not in this area of study. The idea of a smoothing
function limiting the reaching of the transformation allows multiple transformations over the image making possible
other ways of improving the image. Line rectification and face or object recognition for security footage are only
some possibilities of the implementation and show the flexibility of the method. Our implementation resulted in a
intuitive and interactive interface that can compute the transformations almost in real time, even being a prototype
that can be ported to more efficient languages (as C/C++).

A natural extension of this work is to apply our method to omnidirectional videos. A future application area of
this project is virtual reality, since the omnidirectional images and videos represent more visible information than
usual cameras. Another possibility is to process images in a dome.

We also consider to extend our method to find a Moebius transformation that satisfies more than 3 points in a
least-squares sense.
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