
Laboratório VISGRAF
Instituto de Matemática Pura e Aplicada

Creating Software for Interaction and Participation: A
Documentation for Videolab, Klak, and MIDI in Unity

Santiago Guisasola, Luiz Velho (supervisor)

Technical Report TR-20-04 Relatório Técnico

February - 2020 - Fevereiro

The contents of this report are the sole responsibility of the authors.
O conteúdo do presente relatório é de única responsabilidade dos autores.

Creating Interactive Software and Multimedia: A Documentation

for Videolab, Klak, and MIDI in Unity v1.0

Santiago Guisasola

December 28, 2020

Contents

Acknowledgements 5

1 Introduction 6

2 Terminology 10

3 Getting Started 13
3.1 Some Words of Warning and Advice . 13
3.2 The Unity Workstation . 14
3.3 Overview of Klak Nodes . 17

4 Examples 19
4.1 Adam . 19
4.2 Boing . 23
4.3 Peeler . 24
4.4 Poly . 26
4.5 Splash . 27
4.6 Stripe . 29
4.7 Trail . 30
4.8 Bounce . 31
4.9 Button . 33
4.10 Collider . 34
4.11 ColorCubes . 35
4.12 Dancer . 36
4.13 Ramp . 38
4.14 Video . 39
4.15 Wall . 40
4.16 Warp . 41

5 Short Tutorials 42
5.1 Particle Systems . 42
5.2 Playable Director and Timelines . 45
5.3 Video Player . 47
5.4 Animators . 47
5.5 Pure Data and Max MSP . 49

1

A Input 51
A.1 Input > MIDI > Knob Input . 51
A.2 Input > MIDI > Note Input . 53
A.3 Input > MIDI > Sequencer Input . 55
A.4 Input > MIDI > Videolab Input . 56
A.5 Input > Axis Input . 57
A.6 Input > Generic > Bool Input . 58
A.7 Input > Generic > Float Input . 59
A.8 Input > Generic > Float Value . 60
A.9 Input > Generic > Int Input . 61
A.10 Input > Generic > Vector Input . 62
A.11 Input > Generic > Vector Value . 63
A.12 Input > Button Input . 64
A.13 Input > Component > Collider Input . 65
A.14 Input > Component > Transform Input . 66
A.15 Input > UI Event > Drag Event Input . 67
A.16 Input > UI Event > Tap Event Input . 68
A.17 Input > Gyro Input . 69
A.18 Input > Key Input . 70
A.19 Input > Mouse Button Input . 71
A.20 Input > Mouse Position Input . 72
A.21 Input > Noise . 73
A.22 Input > Random Value . 74
A.23 Input > Starter . 75

B Output 76
B.1 Output > MIDI > Knob Out . 76
B.2 Output > MIDI > Note Out . 77
B.3 Output > MIDI > Sequencer Out . 78
B.4 Output > Videolab > Webcam Manager Out . 79
B.5 Output > Selector . 80
B.6 Output > Component > Active Status Out . 81
B.7 Output > Component > Animator Out . 82
B.8 Output > Component > Particle System Out . 83
B.9 Output > Component > Playable Director Out . 84
B.10 Output > Component > Rect Transform Out . 85
B.11 Output > Component > Rigidbody Out . 86
B.12 Output > Component > Transform Out . 87
B.13 Output > Component > Video Player Out . 88
B.14 Output > Generic > Bool Out . 89
B.15 Output > Generic > Color Out . 90
B.16 Output > Generic > Console Out . 91
B.17 Output > Generic > Event Out . 92
B.18 Output > Generic > Float Out . 93
B.19 Output > Generic > Int Out . 94
B.20 Output > Generic > Rotation Out . 95
B.21 Output > Generic > String Out . 96

2

B.22 Output > Generic > Vector Out . 97
B.23 Output > Renderer > Material Color Out . 98
B.24 Output > Renderer > Material Float Out . 99
B.25 Output > Renderer > Material Vector Out . 100
B.26 Output > Rumble Out . 101
B.27 Output > System Property Out . 102

C Conversion 103
C.1 Conversion > Accumulator . 103
C.2 Conversion > Axis Rotation . 104
C.3 Conversion > Color Ramp . 105
C.4 Conversion > Component Vector . 106
C.5 Conversion > Euler Rotation . 107
C.6 Conversion > From To Vector . 108
C.7 Conversion > HSB Color . 109
C.8 Conversion > Vector . 110
C.9 Conversion > Vector Components . 111

D Animation 112
D.1 Animation > Float Animation . 112

E Filter 114
E.1 Filter > Bang Filter . 114
E.2 Filter > Float Filter . 115

F Mixing 116
F.1 Mixing > Color Mix . 116
F.2 Mixing > Float Mix . 117
F.3 Mixing > Float Vector Mix . 118
F.4 Mixing > Rotation Mix . 119
F.5 Mixing > Vector Mix . 120

G Switching 121
G.1 Switching > Delay . 121
G.2 Switching > Repeat . 122
G.3 Switching > Threshold . 123
G.4 Switching > Toggle . 124
G.5 Switching > Toggle Four . 125

H Kino Image Effects 126
H.1 Analog Glitch . 127
H.2 Binary . 127
H.3 Bloom . 128
H.4 Contour . 128
H.5 Digital Glitch . 129
H.6 Fringe . 129
H.7 Isoline . 130
H.8 Isoline Scroller . 130
H.9 Mirror . 131

3

H.10 Motion . 131
H.11 Ramp . 132
H.12 Vignette . 132
H.13 Vision . 133

References 135

4

Acknowledgements

I would like to express my sincerest gratitude for the opportunity to work with the Vision and Graphics
Laboratory at the Instituto Nacional de Matemática Pura e Aplicada. I am especially grateful to Dr. Luiz
Velho for his support and guidance.

5

Chapter 1

Introduction

Unity is first and foremost a game engine: a software-development environment initially intended for the
creation of video games.1 It is a computational platform for designing technologies for interaction between
human and human, human and computer, and even computer and computer.2 Games can be predominantly
visually-based (the music and sound accompany the graphics), predominantly sound-based (the graphics ac-
company the interactions with sound and music), or a mixture of the two. In other words, the user can either
be thinking predominantly visually or sonically, or, in varying degrees, both, in the way that they embody or
insert themselves into the game.

Human input is traditionally captured through a gamepad, joystick, or keyboard and mouse, and controls
aspects, which are chosen by the game creators, of a multimedia scene (computer graphics / visual art, and
sound). This control is achieved by using scripts to tie user input meaningfully to objects in a Unity scene.
Additionally, with scripts, one can use parameters, properties, and statuses of objects to perform computations
that generate anything from movement to deformations, and beyond. In Unity, scripts are short programs
written in C#. Normally, user input and self-feedback within the game are harnessed together in creating
the overall game and defining its dynamics.

From the Unity manual [7]:

“Scripting is an essential ingredient in all applications you make in Unity. Most applications need
scripts to respond to input from the player and to arrange for events in the gameplay to happen
when they should. Beyond that, scripts can be used to create graphical effects, control the physical
behaviour of objects or even implement a custom AI system for characters in the game.”

In other words, scripts effect change in the game by taking user input or bypassing the human component
entirely by capitalizing on self-feedback possibilities within the game. To fully take advantage of Unity’s
immense space of possibilities, scripting is a necessity.

The way Unity works can be thought of as follows. When working with 3D scenes in Unity, one is able to
fill a vast 3D space with objects, lights, cameras, sound sources, and more.3 Scripts inform Unity how these
objects will behave as functions of each other, time, and user input. The location and behavior of all objects

1This documentation’s attention is on Unity’s capabilities of creating interactive multimedia environments that go beyond
the traditional notion of a video game, but these environments will still be referred to as “games.”

2Human input is not required in Unity, and entirely self-dependent games are possible. In these cases, the result can be
thought of as a film that is largely driven through computation, and that, with the computational power afforded by Unity, can
have procedural effects among other computational features.

3Unity also handles 2D games. The details of which, unfortunately, are beyond the scope of this project.

6

together determine which camera view within the game will be captured, rendered, and displayed when the
game runs.

And that is what Unity does: a single still image (a frame) is created, wherein Unity takes the game’s state
in the frame and uses it to compute how the objects will move, ever so slightly, in the 3D space (according to
user input and scripts, for instance), creating the next still image. Unity repeatedly generates and displays
these frames at a rate that is known as the frame rate, which is measured in frames per second (fps). The
standard for movies and television is 24 fps, although higher numbers are possible, which are particularly
useful for sports (usually 30 fps) and slow-motion captures (e.g., 960 fps).

In short, a scene contains objects and scripts that breathe life into the objects. The scripts can also connect
the objects with user input, which is traditionally captured using joysticks, gamepads, and the computer
keyboard and mouse. These mechanisms make Unity a versatile platform for creating interactive multimedia
that transcend traditional notions of video games.

Unity’s wide-ranging interactive multimedia capabilities inspire questioning traditional forms of user input.
If we are breaking free from video games as they stand, why not break free from the standard of joysticks,
gamepads, and mouse and keyboard? A great feature of Unity is its extendibility: users can create packages
that amplify the engine’s space of possibilities. It is through packages that new forms of user input are found.
Additionally, beyond user input, there are packages that redesign Unity’s scripting environment. One such
package, Klak [2], embodies Unity’s scripting capabilities in the form of a visual programming environment.

Tradition in user input involves using joysticks, gamepads, or the computer keyboard and mouse, and these
possibilities come pre-packaged with Unity. Thinking outside of the video game world, however, and inside
the world of multimedia, the possibility of using MIDI for user input becomes an immediate desire.4 Unity
does not have inherent capabilities to work with MIDI input (or to generate MIDI output) but packages exist
giving the engine these powers. Namely, the package MIDIJack, developed by Keijiro Takahashi [2], must be
installed if it is desired to integrate Unity with MIDI communication. Alternatively, there are packages that
encompass MIDIJack and other embellishing upgrades within a larger framework.5

The indispensability of scripting in using Unity to its full potential may be a deterrent to those who would like
to participate in the creation of games and interactive media, but have little to no programming experience.
The good news is that, as mentioned earlier, there is a Unity package that reshapes scripting in Unity. The
visual nature of Klak allows, if desired, entirely bypassing the programming of scripts. Nevertheless, Klak
teaches and uses the logic of scripting and computer programming (it has to, that is still what it is!) and can
be a stepping stone to learning programming to those who are more visually inclined and who want to learn
to program by creating interactive visual and sonic art. For more advanced users, Klak and scripts can be
used in unison.6

With Klak, patches are made where one connects nodes (simple computational blackboxes that capture many
of Unity’s C# scripting capabilities) to each other in clever ways to produce desired computations using user
input and endogenous properties. In other words, rather than having multiple scripts communicate with each
other using global variables, Klak patches are visually connected to each other via wires in the same patcher

4Briefly, MIDI (Musical Instrument Digital Interface) is a communication protocol originally designed for digital music. MIDI
does not create sound but instead relays messages containing information about the note played, how strong it was played, and
more.

5One such package, Videolab, is the focus of this documentation, and will soon be discussed.
6In fact, the Klak nodes covered in this document can be altered and extended by changing their underlying scripts.

7

environment.

Both MIDIJack and Klak can be installed in Unity on their own, or as part of the Videolab package [20].
The Videolab package, which includes both Klak and MIDIJack, was created by Keijiro Takahashi and the
consumer electronics company Teenage Engineering to supplement the capabilities of the OP-Z, an advanced
sequencer and synthesizer created and manufactured by Teenage Engineering. However, it is not required
to own the OP-Z in order to use Videolab.7

Videolab was gifted to the world on October 17, 2018.8 Since then, many enthusiasts have joined the commu-
nity, as evidenced by the numerous online groups and discussions revolving around the OP-Z and Videolab,
and the YouTube tutorials and explorations. There is a common theme behind many comments: the people
want more. Two things are clear:

1. Videolab is revolutionary.

2. There is widespread confusion on the details of Videolab and much of its possibilities remain a mystery
for many participants.

The intention of this documentation is to directly address item (2) above. This is done by summarizing the
essence of the Klak nodes, providing examples of how to use the nodes, and offering short tutorials on some of
Unity’s features that go hand-in-hand with Klak programming and a simple example of integration between
Unity, Videolab, and Max MSP / Pure Data.9 As mentioned, some tutorials already exist; this documen-
tation makes an effort to refer to them when appropriate. In addition, several post-processing image effects
that work very smoothly with Klak, called “Kino Image Effects,” are included in Videolab and are briefly
explained in the appendix. This documentation is not meant to be exhaustive, but should be enough to get
an enthusiast started.

A reader who goes through the entire documentation in a linear fashion might encounter significant repetition
(e.g., many properties and features of Klak nodes are present in several different nodes, as such they have
almost or fully identical explanations and definitions). This was done intentionally for the readers who do
not go through the documentation linearly, so that each node’s explanation is self-contained, and so that the
documentation can be used as a reference and not a book.

An additional intention (and hope) is that this documentation serves as an open-source starting point for
the community to focus their efforts and collectively gather appropriate information, document it, share their
wisdom, and enhance the overall understanding of Klak and Videolab. As such, this documentation is a call
for communal collaboration. There may be errors and misinterpretations (and typos) present in the docu-
mentation, and acknowledgment of this is crucial so that the reader is open to discovering alternative and /
or additional possibilities for the nodes and their properties. Hopefully, upon doing so, they will update the
documentation accordingly. After this documentation is finalized as a document, it will be transferred to an
online wiki platform, or similar online communal environment.

7The author of this documentation, for instance, does not own the OP-Z.
8This is the official public release date of Videolab.
9Max MSP and Pure Data can serve as intermediate steps that manipulate data coming from other platforms, such as Wii

controllers and Mocap, translate these data into MIDI, and channel it into Unity for desired control of the game. Unfortunately,
the details of these translations are beyond the scope of this documentation, and only a simple example of the use of these
softwares is provided at the end of the documentation.

8

Above all, the main intention of this project is to increase the number of people participating in the creation
of these technologies, and to increase the overall number of projects in the field. To put it another way, the
goal is such that a person who has never programmed before, never used Unity, and maybe never played with
a MIDI controller or software platform, will be able to create interactive audiovisual art and participate in
this growing community, or at least get started.

It is worth noting that this documentation is also useful for those who have no interest in working with MIDI.
This is because traditional means of capturing user input can be used, such as with a mouse and keyboard,
a joystick, a gamepad, or even smartphones and tablets. Additionally, as stated earlier, it is entirely possible
to create Unity games that take in zero user input. However, hopefully this documentation makes it clear, if
it is not already, that MIDI provides an incredible enhancement to Unity.

9

Chapter 2

Terminology

Words and phrases that are commonly used throughout this document are defined and explained in this
chapter.

Bang – A bang is a message in Klak akin to its appearance in other visual programming environments such
as Max MSP and Pure Data. From the Max MSP manual [3]: “[The bang is] the message that tells many
objects to do that thing you do. As a result, sending the bang message to other objects will normally cause
them to send messages from their outlets.” Note: what the Max MSP manual refers to as “object” we refer
to as “node” in the context of Klak.

Child (and Parent) Objects – From the Unity manual [9]: “Unity uses a concept called Parenting. When
you create a group of GameObjects, the topmost GameObject or Scene is called the ‘parent GameObject’,
and all GameObjects grouped underneath it are called ‘child GameObjects’ or ‘children’. [...] To make any
GameObject the ‘child’ of another, drag and drop the intended child GameObject onto the intended parent
GameObject in the Hierarchy.”

DAW – A digital audio workstation (DAW) is a software for producing music and working with MIDI. Com-
mon DAWs include Garageband, Ableton Live, Pro Tools, Fruity Loops, and Cubase.

Euler Rotations (and Euler Angles) – Euler angles are a set of three values representing distinct angles
in 3D space that describe the orientation of an object. An Euler rotation uses these angles to define a rotation
of the object, and can be used in place of quaternions. Euler rotations are susceptible to gimbal lock, which
is the loss of a degree of freedom in rotations due to the aligning (or “locking”) of two of the variables used to
describe the rotation. (Note: quaternions are not susceptible to gimbal lock.)

Float – A number with a decimal place.

GameObjects – From the Unity documentation [8]: “The GameObject is the most important concept in the
Unity Editor. Every object in your game is a GameObject. This means that everything you can think of to
be in your game has to be a GameObject. However, a GameObject can’t do anything on its own; you need
to give it properties before it can become a character, an environment, or a special effect. [...] Depending
on what kind of object you want to create, you add different combinations of components to a GameObject.
You can think of a GameObject as an empty cooking pot, and components as different ingredients that make
up your recipe of gameplay.”

10

Hierarchy – From the Unity manual [9]: “The Hierarchy window contains a list of every GameObject in the
current Scene. [...] When you add or remove GameObjects the Scene (or when your gameplay mechanic adds
and removes them), they appear and disappear from the Hierarchy as well. By default, the Hierarchy window
lists GameObjects by order of creation, with the most recently created GameObjects at the the bottom. You
can re-order the GameObjects by dragging them up or down, or by making them ‘child’ or ‘parent’ GameOb-
jects.”

Inlet – We refer to the left-hand input connections of Klak nodes as inlets.

Int – An integer, i.e., a number without a decimal place.

Interpolator – Many Klak nodes have the option of using an interpolator, which is a method for transition-
ing between two values. This can be done directly by jumping from one value to another, or smoothly by
following a curve. A dropdown menu contains the options Direct, Exponential, and Damped Spring. The
latter two have an option for speed. For example, the note off value of a particular MIDI note may be set to
0, and the note on value set to 1. If the interpolator is set to Direct, once the note is played, the value being
sent out of the node will change directly and immediately from 0 to 1. On the other hand, if the interpolator
is set to Exponential or Damped Spring, then, depending on its settings, the value will smoothly go from 0 to 1.

Klak Patches – The space where Klak nodes and wires are created.

List – All Klak nodes with outlets have an accompanying list that summarizes which other nodes these outlets
connect to. It is possible to create connections between nodes (and even GameObjects) without wires through
the list.

Max MSP – A visual programming environment for music and multimedia installations.

MIDI – Musical Instrument Digital Interface (MIDI) is a standard communication protocol originally devel-
oped for digital music, but that throughout its history has made its way to other types of digital communication
(e.g., controlling lights).

MIDI Controller – A digital instrument that sends (and sometimes receives) MIDI information. A MIDI
controller is usually connected to a DAW. A theme of this documentation is using MIDI to control Unity.

MIDI Note Number – A numerical representation of musical notes used by MIDI. For reference: Middle C
(or C4) has MIDI note number 60. These values range from 0 to 127, although the lowest note on the piano
(A0) has a MIDI note number of 21 (which has frequency 27.50Hz, close to the lower limit of human hearing,
roughly 20Hz). Oftentimes, MIDI note values 0 - 20 are saved for other types of messages (e.g., percussive
sounds).

MIDI Source Object – A MIDI Source object is created via the Unity menu bar, by first clicking GameOb-
ject, then MIDIJack, then MIDI Source. These are useful when there are more than one MIDI source that
Unity is listening to.

MIDI Velocity – The force used to play a MIDI note, ranging from 0 - 127, where 0 represents no velocity
(and thus no discernible sound) and 127 represents full force.

11

Nodes – We refer to the individual computational blackboxes in Klak as nodes.

Object Component – From the Unity documentation [16]: “Components are the nuts & bolts of objects
and behaviors in a game. They are the functional pieces of every GameObject.” Many GameObject’s come
prepackaged with components and all have the ability of being augmented by more components.

Object Hierarchy – see Hierarchy.

Outlet – We refer to the right-hand output connections of Klak nodes as outlets.

Parent (and Child) Objects – See Child (and Parent) Objects.

Patcher – see Klak Patches.

Pure Data – see Max MSP.

Quaternion - From the Unity manual [13]: “Quaternions are used to represent rotations. They are compact,
don’t suffer from gimbal lock and can easily be interpolated. Unity internally uses Quaternions to represent
all rotations. They are based on complex numbers and are not easy to understand intuitively.” In other
words, don’t worry about the details of quaternions, and trust Unity to handle them as rotations. Usually,
you will be able to think about and work with more intuitive representations of rotations, and Unity will take
care of working with their quaternion representations.

Scene - Scenes are the “vast 3D spaces” that can be filled with objects, as mentioned in the introduction of
the documentation. From the Unity manual [14]: “Scenes contain the environments and menus of your game.
Think of each unique Scene file as a unique level. In each Scene, you place your environments, obstacles, and
decorations, essentially designing and building your game in pieces.”

Shaders - From the Unity manual [10]: “Shaders are small scripts that contain the mathematical calculations
and algorithms for calculating the Color of each pixel rendered, based on the lighting input and the Material
configuration.”

String - From the Unity documentation [15]: “[A string] represents text as a series of Unicode characters.”

Vector3 - From the Unity documentation [17]: “[A Vector 3 is a] representation of 3D vectors and points.
This structure is used throughout Unity to pass 3D positions and directions around. It also contains functions
for doing common vector operations.”

Wires - In this documentation we refer to the connections between Klak nodes as wires.

12

Chapter 3

Getting Started

This chapter outlines important information to get started with Unity, Klak, and Videolab. The first section
details possible mishaps and initial confusions. Then, given the numerous possible configurations of the Unity
workstation, an example of how to organize the workstation is provided. Finally, the chapter closes with a
brief overview of the classes of Klak nodes and their functions.

3.1 Some Words of Warning and Advice

• Naming the Klak nodes.

Each Klak node added to the patcher comes with a name slot. For example, the Note Input node is initially
simply called Node Input. If several of these are created and assigned to listen to different notes from the
MIDI device, the patch can become very confusing very quickly because all of these nodes will be named the
same thing: Node Input. By renaming these nodes, the patch becomes organized and easier to build upon
and edit. For example, the specific Note Input node listening for the note C (in any octave) can be renamed
Note Input: C.

• Downloading the correct version of Unity.

Unity is updated frequently and there is not always guaranteed compatibility across versions. In fact, because
of this, developers often have many versions of Unity installed on their computer, which are managed through
the Unity Hub. With the Unity Hub, specific versions of Unity can be opened for specific projects. In the
case of Videolab, the best version to use (the one it was developed for) is version 2018.2. If Videolab is being
used to build videopaks for the OP-Z, then using Unity version 2018.2 is necessary, since it is the only version
that is compatible with version 1.1 of the OP-Z.

• Selecting a GameObject.

There are many situations where it is necessary to select a GameObject for a node’s function and for other
features, such as selecting the material of a GameObject. In such situations, in the node’s inspector there is
an empty field in which the user must select a GameObject. There are two ways of doing so. The first is to
simply drag the GameObject into the empty field. The other is to click on the little circle next to the empty
field and select the desired GameObject from the list of objects.

• For a solid background color.

Select the Main Camera from the object hierarchy. In the camera’s inspector, use the dropdown menu titled
Clear Flags and select Solid Color.

13

• Making changes while the scene is in play mode.

Be careful. A common mistake, with sometimes devastating consequences (e.g., losing crucial adjustments)
is making changes while the scene is in play mode. A way to think of play mode is that it is a test or debugging
mode. Everything created can be tested, and during the testing, properties can be changed so that the user
can observe in real time how certain changes will affect their game. Changes made during play mode
that the user would like to preserve should be copied, written down, or somehow recorded.
When play mode is ended, most changes made will be reversed. Be mindful of this.

• Installing Videolab.

Installing Videolab is simple. Download the latest version of the Videolab package on the Teenage Engineering
GitHub page. From a Unity project, go to Assets on the Unity toolbar menu, then select Custom Package
from Import Package. Simply select the Videolab package and load it into Unity.1

3.2 The Unity Workstation

There are many ways to organize the Unity workstation. On the top-right corner, there is a dropdown menu
labeled Layout with options including 2 by 3, 4 Split, Default, among others. The setup of the workstation
can be adjusted as the user sees fit. The author uses the default workspace with additional commonly used
windows.

This is done by selecting the desired windows through the Window option in the workstation’s menubar
and dragging them to become a tab in the desired main window. The following image shows the four main
windows of the default layout boxed out in yellow, green, blue, and purple.

1Please note: The author experienced difficulties importing the package using a PC. The workaround was to exclude the file
“csc.rsp.” The reader’s experience may differ, but in case of the same difficulties, this workaround may save a significant amount
of time and trouble. The author had to difficulties importing the full package into Unity. To exclude the “csc.rsp” file, when the
Videolab package is being imported, the user has the option to include or exclude specific files. Simply uncheck the “csc.rsp” file.

14

The next image shows the default workspace with additional windows clearly marked for:

• Klak Patches (the Patcher window on the bottom; purple box)

• MIDI input and output information flow (the MIDI Jack window on the bottom; purple box)

• The Timeline window (used in the Playable Director and Timelines short tutorial; on the bottom; purple
box)

• The Animator window (used in the Animators short tutorial; on the bottom; green box)

15

Klak Patch

The Klak Patch window appears automatically when a patch GameObject is created and the patcher is opened
through the patch object’s inspector. Alternatively, the window can be opened by accessing the Window op-
tion on the workstation’s menubar, selecting Klak, then selecting Patcher. The window can then be placed
as a tab in any of the main windows, and when selected appears as below. This window is necessary when
making Unity scenes with Klak functionality.

MIDI Jack

The MIDI Jack window is opened by accessing the Window option on the workstation’s menubar and selecting
MIDI Jack. This window shows incoming and outgoing MIDI data, detailing the message and the detected
MIDI device(s). This window is optional and serves mostly (or entirely) for debugging.

Timeline

The Timeline window is opened by accessing the Window option on the workstation’s menubar and selecting
Sequencing, then selecting Timeline. This window is necessary when creating Timeline animations, as detailed
in the Playable Director and Timelines tutorial found in section 5.2

16

Animator

The Animator window is opened by accessing the Window option on the workstation’s menubar and selecting
Animation, then Animator. This window is necessary when manipulating animation sequences and cycles, as
detailed in the Animator tutorial found in section 5.4.

3.3 Overview of Klak Nodes

The Klak patches are organized into seven classes: Input, Output, Conversion, Animation, Filter, Mixing,
and Switching. The functionality of most of these classes is implied by their names.

In most cases, if not all, the Input and Output nodes will be the endpoints of connections within the patch.
The Input allows the user to receive information from, for example, GameObjects, image effects, mouse &
keyboard, MIDI controllers, and DAWs, but also allow the user to generate information that is sent directly
out of the Input node’s outlets without being tied to GameObjects, components, or controllers (e.g., pseu-
dorandom numbers). The Output nodes, similarly, send information to, for example, GameObjects, image
effects, MIDI controllers, and DAWs.

Conversion nodes take in information of a certain type and convert it. For example, the Vector Components

17

node takes in a vector3 (a 3D vector) and sends out three separate floats, one for each dimension.

There is only one Animation node: Float Animation. This node sends out successive floats in a time interval
according to a curve defined in the node’s inspector. This may be as simple as a line that goes from the value
0 to the value 1 in a single second, or it may be a sinusoidal curve that oscillates between -1 and 1 several
times in a second.

There are just two Filter nodes: Bang Filter and Float Filter. Bang Filter can be turned on or off,
allowing bang messages to be propagated through the node, or not. Float Filter, on the other hand, applies
a linear transformation to an incoming float.

Mixing nodes for the most part, apply mathematical operations to two incoming pieces of data, sometimes
of the same type or of different types. For example, a float can scale a vector, or two floats can be added,
subtracted, multiplied, and so on.

Switching nodes use either floats or bangs as inputs and perform functions related to delaying and repeating
bangs, or toggling between several options and sending bangs or floats depending on these options.

The next chapter goes over several example scenes using most Klak nodes, in which the following descriptions
should become clearer. In addition, the appendix contains information on all Klak nodes.

18

Chapter 4

Examples

This chapter goes through several Unity scenes exemplifying the function of most Klak nodes. The first seven
examples (Adam, Boing, Peeler, Poly, Splash, Stripe, and Trail) are found in VideolabTest-master. These
scenes were created by Keijiro and can be downloaded from his GitHub [2].1 The next nine examples (Bounce,
Button, Collider, ColorCubes, Dancer, Ramp, Video, Wall, and Warp) can be found in VL_Examples. These
scenes were created by the author and can be downloaded from his GitHub (coming soon).

The reader is encouraged to see these scenes in action as they read through the examples in this chapter. It
is invaluable for learning Klak to run the scenes, play with the patches, investigate the selected GameObject
properties that are being received by Klak through Input nodes and that are sent out by Klak through
Output nodes, among other exploratory and didactic activities. In particular, deconstructing the modules
that activate various events so that each single event can be activated on its own is a fruitful exercise.

4.1 Adam

Nodes Used: Note Input, Key Input, Random Value, Transform Out, Material Color Out, Material

Float Out, Axis Rotation, Component Vector, Euler Rotation, HSB Color, Float Animation, Bang

Filter, Float Filter
1Note that the author altered the names of the Klak nodes contained in Keijiro’s scenes for the purposes of the images and

explanations included in this chapter. Hence, when downloading these scenes from GitHub, the Klak nodes will not have the
names shown here.

19

The Adam scene consists of a 3D box (the GameObject named
Quad) containing Michelangelo’s Adam painting on all faces. Quad’s
material has a number of variable properties. These are:

• The texture, which is the image currently set to Michelangelo’s
Adam painting.

• Two fill colors, which overlay different parts of the texture. These
colors have float variables that manipulate the threshold of the
color, which are accessible through Material Float Out. Ad-
ditionally, the fill colors have color inputs which are accessible
through Material Color Out.

• Four effects: low res, slice, jitter, and flash (all float variables go
from 0 to 1, except the angle which goes from -1 to 1, and can be
manipulated with Material Float Out).

1. Low res - The higher the float variable Intensity, the more
the image loses resolution and becomes pixelated.

2. Slice - The float variable Intensity moves slices of the box
in varying speeds and directions. The angle of the slices is
controlled by the float variable Angle.

3. Jitter - The float variable Jitter controls the intensity of the
analog jitter image effect.

4. Flash - The float variable Flash controls the intensity of the
flash effect which is similar to lowering the threshold of both
fill colors.

The user can control a few aspects of Quad and other aspects of the scene using either keyboard or MIDI
input. The Klak patch creating this interactivity is comprised of 4 main modules. Images of these modules
are provided below with explanations.

The above module is activated either when the Z key of the keyboard is pressed (Key Input), or a MIDI
note is received through channel 1 (Note Input). The Bang Filter starts opened and simply transforms
the incoming single bang into four separate bangs, activating two pseudorandom number generators (Random

Value) and two Float Animations.2

2A closed Bang Filter would have to receive a bang in its Open inlet before functioning, as explained in the node’s docu-
mentation.

20

The top Float Animation goes from 1 to 0 at a speed of 3 over the original duration of one second (i.e., it
goes from 1 to 0 in about 0.33 seconds). These values get multiplied by the two random numbers (in the
range from -50 to 50) and, through Component Vector, become the x and y components of the vector (x, y, 0).
Finally, these vectors are fed into Euler Rotation, which transforms the stream of vectors into a continuous
sequence of rotations. These rotations get sent through Transform Out to manipulate the Camera Pivot
GameObject, which is the second parent of the scene’s camera.3

In short, each time the Z key is pressed or a MIDI note is received through channel 1, the camera pivots
in a continuous and animated fashion over the course of roughly 0.33 seconds, each time in varying x and
y intensities according to the random numbers generated. Note that each time the Z key is pressed or a
MIDI note received through channel 1, the random number generators receive a bang and hence generate new
random numbers.

The bottom Float Animation goes from 1 to 0 at a speed of 4 over the original duration of one second (0.25
seconds). Through Material Float Out, these values manipulate Quad’s low res effect. In other words,
Quad loses maximum resolution, then, continuously over 0.25 seconds, regains full resolution.

The above module starts very similarly to the first module covered earlier. As such, much of its description is
the same. The module is activated either when the X key of the keyboard is pressed (Key Input), or a MIDI
note is received through channel 2 (Note Input). The Bang Filter starts opened and simply transforms
the incoming single bang into four separate bangs, activating two pseudorandom number generators (Random

Value) and two Float Animations.4

The top Float Animation goes from 1 to 0 at a speed of 3 over the original duration of one second (i.e., it
goes from 1 to 0 in 0.33 seconds). These values get multiplied by the random number (in the range from -80 to
80) and, through Axis Rotation, animate a rotation about the z-axis. This rotation manipulates the Batch
empty GameObject, which is the first parent of the scene’s camera. Basically, this causes slight rotational
jerks in the camera view.

The bottom Float Animation goes from 1 to 0 in 0.25 seconds, and directly changes the intensity of Quad’s
slice variable. The Random Value (between -1 and 1) sets the angle of the slice effect.

3Making the camera a child of an empty GameObject is a way of achieving pivoting rotations since a rotation of the empty
GameObject will rotate all of its children (including the camera) around its center of rotation. In fact, in Adam, the camera has
two parents.

4A closed Bang Filter would have to receive a bang in its Open inlet before functioning, as explained in the node’s docu-
mentation.

21

The above module is activated either when the C key of the keyboard is pressed (Key Input), or a MIDI
note is received through channel 3 (Note Input). The Bang Filter is redundant here since it only outputs
a single bang. The bang activates a very fast float sequence from 1 to 0 (about 0.17 seconds) that animates
the jitter image effect.

Adam’s last module is activated when either the V key of the keyboard is pressed (Key Input), or a MIDI
note is received through channel 4 (Note Input). Once activated, two bangs are sent out of the Bang Filter,
activating a Float Animation and a Random Value. The float sequence from 1 to 0 over 0.2 seconds gen-
erated by Float Animation is sent to Quad’s flash material effect through Material Float Out. Basically,
this causes Quad to be fully colored in by the second fill color for a brief moment.

The random number between 0 and 1 generated by Random Value becomes the hue of the first fill color and
is slightly skewed before becoming the hue of the second fill color. The random float value becomes a hue
through the HSB Color node and is sent to Quad’s material through Material Color Out. One of the hues
comes directly from the random float, while the other is a translation of the random float by 0.2, which is
achieved with the Float Filter node.

22

4.2 Boing

Nodes Used: Note Input, Transform Out, Material Float Out, From To Vector, Float Animation,

Float Filter

The Boing scene contains 5 small modules, each of which activates words or effects (Boom, Tschak, Ah, Kick,
and Boing) that grow on the screen before disappearing. Due to the similar nature of all modules, focus is
only given to the module connected to the Kick effect.

The Kick GameObject is a wobbly 2D disc with a shader that uses noise to wobble the object, has a color,
and a polygon count (e.g., if the polygon count’s variable is set to 4 or 5, the object will be a square or
a pentagon, respectively). Since the nodes do not manipulate the Kick’s shader variables, these variables
will not be explored here. However, the reader is encouraged to manipulate the object’s shader variables to
observe and explore the effects. Further patchwork is additionally encouraged to extend the scene by altering
these variables creatively.

Kick’s patch module above is simple. A Float Animation is activated by Note Input when the note B is
played by a detected MIDI instrument on any channel. The float sequence, in a period of about 0.33 seconds,
sharply rises from 0 to 1, then goes more steadily back to 0. These floats, through From To Vector, smoothly
animate vectors from (0, 0, 0) (when the incoming float is 0) to (1.7, 0.9, 1) (when the incoming float is 1).
These vectors manipulate the Kick GameObject’s scale through Transform Out.

Basically, when a B note is played, the Kick GameObject’s scale quickly becomes (1.7, 0.9, 1), then more
steadily but still quickly goes back to (0, 0, 0). In other words, the wobbly 2D disc rapidly emerges and covers
the screen before shrinking and disappearing.

23

4.3 Peeler

Nodes Used: Note Input, Key Input, Mouse Button Input, Event Out, Material Float Out, Float

Animation, Float Filter

The Peeler scene contains an intricate setup. There is a parent-child hierarchy of empty GameObjects: the
Camera Pivot (ultimate parent), the Distance (child of Camera Pivot), and the Snap Point (child of Distance).
The Camera Pivot and Distance GameObjects have Brownian Motion scripts causing the objects to rotate
and move. The scene’s Main Camera object has a Smooth Follow script, making the camera follow the Snap
Point object. Running the scene and observing the camera movements in scene mode (rather than game
mode) can be an enlightening exercise.

The star of the scene is the Sphere object. The object’s rotation
is manipulated by a Brownian Motion script so that it is always
slightly turning in different directions. Additionally, the Sphere has
a shader with the following variables:

• Fill Color & Line Color are the color of the sphere and the color
of the lines of the triangulation over the sphere’s surface, respec-
tively. These color variables can be manipulated with Material

Color Out.

• Deform 1 & Deform 2 morph the sphere by causing different
groups of vertices to move in varying directions and amplitudes.
These float variables can be manipulated with Material Float

Out.

• Cutoff 1 & Cutoff 2 cause a ghostly effect that seems to come
from within the sphere. These float variables can be manipulated
with Material Float Out.

• Highlight Groups 1-4 highlight different sets of triangles over the
triangulation of the sphere. They can be manipulated with Material

Float Out.

24

There are three separate patches in the Peeler scene. Attention is given only to two of the modules: those
containing Mouse Button Input and Event Out, which are not found in any other VideolabTest-master ex-
ample scenes.

The above module receives input from mouse clicks (Mouse Button Input), the Z and X keyboard keys (Key

Input), and MIDI notes from channels 1 and 2 (Note Input). These inputs are connected in varying combi-
nations to four Float Animations, two of which go from 1 to 0 and the remaining two from 0 to 1. These float
sequences undergo a linear operation through different Float Filters, most of which are redundant (they
take the input x and send out x unchanged). One of these Float Filters doubles the value of x. The first
two sequences of floats are added (Float Mix) and sent to the Sphere’s deform shader effect. The minimum
value of the last two sequences of floats is taken by Float Mix before manipulating the Sphere’s Cut Off 1
shader effect.

The inputs in this module each trigger two Float Animations, ultimately triggering both effects of the
module. Hence, any of the inputs in the module basically cause a short spike (above 0) in the Deform 1
shader effect, and a short dip (below 1) in the Cut Off shader effect.

The above module takes input from the spacebar on the keyboard (Key Input) and from any MIDI note on
channel 1 (Note Input). This input simply bangs an Event Out node, which is set up to rehash the Brownian
motion of one of the objects affecting the flux of the Main Camera. This effectively causes the Main Camera
to reset its position.

Note that the Event Out node does not have an empty field to select a GameObject and to further select
where in the object the event will occur. Instead, the user must create an empty field by adding an entry to
Event Out’s list in the node’s inspector.

25

4.4 Poly

Nodes Used: Note Input, Starter, Material Float Out, System Property Out, Color Ramp, Float

Animation, Float Filter

Poly has four animals that are continuously spinning in place. This scene is similar to the Peeler scene where
the input deformed the sphere; here the input deforms the animals. Partly due to this, for this scene, atten-
tion is given only to the patch module containing the nodes Starter and System Property Out. This is also
because these nodes are not found in any other VideolabTest-master examples.

The above module is not activated by any input. Instead, it is activated by the Starter node, which sends
the float 0.66 immediately as the scene starts. This float flows into Color Ramp to choose a gray value cor-
responding to the float 0.66 in a gradient from black to white. This color is sent to System Property Out’s
Ambient Color. The float also flows into System Property Out’s Ambient Intensity.

The effect of this is that the scene lights up. To explore this and have
control over when the effects are activated, the reader is encouraged
to replace the Starter node with a Key Input node. The node can
be left with the default option for the spacebar. After connecting
the node’s Key Down outlet to the Color Ramp inlet and System

Property Out’s Ambient Intensity inlet, change the values in Key

Input’s list from 1 to 0.66. This is shown on the right. And, of
course, the reader is encouraged to try other values and inlets.

26

4.5 Splash

Nodes Used: Note Input, Key Input, Random Value, Particle System Out, Float Out, Material

Color Out, Material Float Out, HSB Color, Float Animation, Bang Filter, Toggle

Associated Kino Image Effect: Digital Glitch

Splash is similar to Boing in the sense that they both cause an image to quickly appear and then disappear.
Two major differences are that Splash has only three effects (Boing has five), and it uses Particle Systems.
The GameObject BG is manipulated by its shader variables, and is an opening-and-closing shutter effect.
The details of the shader variables will not be discussed because a discussion already exists for the shader
variables in Adam and Peeler.

The above module causes a Digital Glitch effect and changes the color scheme of the scene. This is done by
first taking in an input bang from the spacebar (Key Input) and from any MIDI note coming in from channel
4 (Note Input). The subsequent Bang Filter relays this bang to a Float Animation and a Random Value.

Float Animation smoothly generates floats from 1 to 0 in about 0.33 seconds, which are sent, through Float

Out, to the Main Camera’s Digital Glitch effect. This causes a Digital Glitch to appear with maximum in-
tensity before it fades away in one-third of a second.

The random value between 0 and 1 (Random Value) ultimately alters four colors: the two colors of BG’s shut-
ter shader effect, and the colors of the particle systems Splash and Dots. The same random float is used as
the hue (HSB Color) of BG’s shutter effect’s two colors (Material Color Out) which differ only in brightness.

27

The value of 0.5 is added to the same random float (Float Filter), which then becomes the hue of the color
(HSB Color) that is sent to Splash and Dots (Material Color Out).

Hence, whenever the spacebar is pressed or a MIDI note played on channel 4, a Digital Glitch effect happens
and the color scheme of the scene changes.

The above module is activated by the Z key on the keyboard (Key Input) or a MIDI note played on channel
1 (Note Input). When this happens, the bang goes through a Bang Filter to subsequently activate a Float

Animation, two Random Values, and a Toggle. Ultimately, BG’s float-valued shader properties are manipu-
lated (Material Float Out).

The top Float Animation generates a short 0.2 second sequence of floats from 1 to 0, which get sent to BG’s
threshold variable. This causes the shutter effect to quickly appear fully closed before opening once more.

The Random Value and Toggle get multiplied in the Float Mix before being sent to BG’s angle variable. The
engineering behind this is clear: the random value is between 0 and π/2 (or, between 0 and 1.57 or between
0 and 90 degrees). The toggle alternates between the values of 1 and −1. As such, the angle of the shutter
always alternates between an angle between 0 and π/2 and one between −π/2 and 0.

Finally, the bottom Random Value generates a float between 6 and 18 and is sent to BG’s repeat effect, which
is essentially the number of blinds squeezed into the shutter effect.

The above image contains two similar modules, the left activated by the X keyboard key (Key Input) or a
MIDI note on channel 2 (Note Input), and the right is activated by the C keyboard key or a MIDI note on
channel 3. The bang generated by these inputs are sent to the Emit inlet of a Particle System Out node,
which causes the system to emit its particles. A short tutorial on Particle Systems can be found in chapter 5.

28

4.6 Stripe

Nodes Used: Note Input, Key Input, Random Value, Float Out, Material Color Out, Material

Float Out, Accumulator, HSB Color, Float Animation, Bang Filter, Float Filter

Stripe consists of many ribbon like rectangles that move around, which are produced by a shader on the plane
GameObject Quad. The patch dictates how these stripes rotate, grow, and move by manipulating Quad’s
shader variables. There are two modules in Stripe’s Klak patch. We will go over only the first, which makes
use of the Accumulator node.

The above module takes four keyboard inputs (the keys Z, X, C, and V, through Key Input) and four MIDI
note inputs (in channels 1-4, through Note Input). The bangs generated by these inputs get sent to Bang

Filters, which then get propagated in varying combinations to trigger an Accumulator, two Random Values,
and two Float Animations.

29

The first time the Accumulator receives a bang, it sends out a 1. The next bang causes it to send out a 2,
then a 3, and so on. These values go through a redundant Float Filter (redundant because it receives x
and outputs x), before getting sent to Quad’s seed variable through Material Float Out. Hence, this simply
moves up the value of the seed that generates Quad’s broken tiles.

The first Random Value simply produces a float value between 0 and 20, which goes through another re-
dundant Float Filter. This value ultimately goes out of a Material Float Out to change Quad’s rows
variable, which dictates the number of stripes in the effect.

Two Float Animations are triggered, both going from 1 to 0 in 0.2 seconds in the exact same way, and
going through two similar Float Filters, one simply multiplies the incoming floats by −1, and the other
by −1/2. These floats are added in Float Mix before getting sent to Quad’s threshold variable through
Material Float Out. The threshold variable of Quad’s shader goes from −1 to 1 and dictates the amount
of empty space between the broken ribbons, with −1 meaning the ribbons fully take over the screen, and 1

means there empty space between the ribbons fully take over the screen. The consequence of this is a short
animation that starts with no empty space between the ribbons and proceeds to grow the empty the space.
Note that the two Float Animations just described can be activated at different times.

Finally, the last Random Value generates a number between −π/2 and π/2 (an angle between -90 and 90
degrees), which, after going through a redundant Float Filter, gets sent through a Material Float Out

to manipulate Quad’s rotation variable.

4.7 Trail

Nodes Used: Note Input, Key Input, Random Value, Particle System Out, Color Out, Float Out,

Material Color Out, HSB Color, Float Animation, Bang Filter, Float Filter

Trail is a scene similar to Boing and to Splash. The main difference in Trail is that instead of the images
disappearing, they trail off in the distance. Because most of the functionality of the patches in the scene are
similar to those previously explained, focus is given to only a piece of a single module: the flow that ends
with Color Out.

30

The above module is activated the spacebar is pressed (Key Input) or when a MIDI note is played on channel
16 (Note Input). The flow that ends in Color Out involves a Bang Filter which splits the incoming bang in
three, followed by a Random Value between 0 and 1, which gets sent to a redundant Float Filter (redundant
because the input x is unchanged). The random float between 0 and 1 ultimately makes its way as the hue
of HSB Color with saturation 0.45, brightness 0.33, and alpha 1. The generated color is then sent to the
background color of the Main Camera through Color Out.

4.8 Bounce

Nodes Used: Float Value, Transform Input, Playable Director Out, Transform Out, Vector

Components, Float Filter, Float Mix

Associated Tutorial: Playable Director and Timelines

First, note that the Bounce scene has no human-computer interactivity. The scene has two bouncing spheres
and a floating cube. The spheres bounce according to an animation created using the Playable Director
and Timelines. Their bounces come from the same animation sequence, but become polyrhythmic when
their speeds are adjusted accordingly. The cube’s size is scaled according to the product of the cycles of the

31

polyrhythmic spheres; only when the spheres align does the cube reach its full size. There are two module
classes in Bounce: one adjusts the speed of the animation for each sphere, and the other scales the cube.

The above module simply scales the speed of the two animations, which is achieved with Float Value nodes
adjusting the speed of Playable-Director-driven animations. The top Float Value node sends a 1/4 to the
speed inlet of the Playable Director Out node that controls the left bouncing sphere. Similarly, the below
Float Value node sends a speed of 1/3 to the right sphere’s animation. The polyrhythmic effect is achieved
since it takes the left sphere three full bounces and the right sphere four full bounces for the spheres to reset
their collective cycle.

The two Transform Inputs grab the position vectors of the two bouncing spheres and send them to Component

Vectors. Since the spheres only bounce along the y-axis, the y values are the only ones that are dynamic,
going from the original height of the spheres, 3, to 0. These values get multiplied using Float Mix. Note
that the product of these values is 9 just in case both spheres are at their original starting positions. This
product gets scaled by 1/9 using Float Filter so that their range becomes 0 to 1, instead of 0 to 9. Finally,
these floats are sent to the Uniform Scale inlet of a Transform Out node that is connected to the cube. The
option to “Add To Original” in Transform Out’s inspector is off, so that the cube’s overall scale ranges from
0 to 1, instead of 1 to 2.

32

4.9 Button

Nodes Used: Color Out, Color Ramp, Float Filter, Tap Event Input, Rect Transform Out, String

Out, Toggle Four

Button is a simple scene meant primarily to illustrate some of Klak’s UI nodes and the String Out node. A
colored button with text is in the middle of the scene. Once it is pressed, the background of the scene changes
to the button’s color, the button grows, and becomes a new color.

The Tap Event Input node detects when its associated UI element is pressed. In this scene, the associated
UI element is the button. Once the button is pressed, it sends a bang to Toggle Four, which alternates
between its state outlets. The first bang it receives causes it to send a bang out of its State 1 outlet and the
corresponding value out of the Value outlet. The next bang will cause it to send a bang out of its State 2
outlet and the corresponding value out of the Value outlet. This process cycles, and every time a different
String Out node is activated, sending in succession the strings “Purple”, “Red”, “Dark Blue”, and “Light Blue”
to the UI button.

The values cycled activate two Color Ramps, which change the color of the button and the Main Camera’s
background through Color Out. The two Color Ramps have the same color sequences, where the button’s
sequence is earlier than the background color’s sequence by one color. Lastly, the Float Filter multiplies
the float received by 100 before sending to the uniform scale inlet of the Rect Transform Out.

33

4.10 Collider

Nodes Used: Vector Value, Collider Input, Transform Input, Active Status Out, Rigidbody Out,

Int Out, Rotation Out, Rotation Mix, Delay, Repeat, Toggle Four

Associated Kino Image Effect: Fringe

The larger central cube of Collider is the only cube that has a Rigidbody and Physic object, both of which
are necessary to detect collisions. The cube falls and rotates, causing all other cubes to rotate. Each time it
bounces, the color degrades by one bit. The Delay node is used in a couple of ways, one of which is to give
the central cube one last kick once it has settled.

Once a collision has been detected by the Collider Input node, a bang triggers the Toggle Four node that
performs numerous activities. Its sucessive bangs, in order, hit two Delay nodes, a Repeat node, and an
Active Status Out node.

There are two Vector Value nodes which set up the Rigidbody Out to load the appropriate point of impact
and force. With these vectors loaded, the Rigidbody Out node is activated when it receives a bang from
the Delay and Repeat nodes, which delay the bang by 5 seconds, and repeats three bangs spaced out by 0.5
seconds, respectively.

The Main Camera’s Fringe image effect is activated by the third bang coming from Toggle Four and deac-
tivated, with a delay of 1 second, by the fourth bang.

34

Finally, the color of the entire image is incrementally degraded with each successive collision, which is achieved
with the Int Out node.

In other words, as the central cube tumbles and falls, the collisions encourage further tumbling (through
Rigidbody Out) and each successive collision degrades the color of the entire image.

The above module takes the central cube’s rotation and sends it to the floating cubes. The rotation is faithfully
sent to cubes in the corners, and it is mixed through Rotation Mix before causing the upper middle cube to
spin.

4.11 ColorCubes

Nodes Used: Material Color Out, HSB Color, Float Value, Noise, Color Mix

ColorCubes is a very simple scene consisting of three cubes. The outermost cubes have their colors manip-
ulated by pseudorandom noise (Noise). The central cube’s color is created by mixing the colors of the two
outermost cubes (which are continuously changing, through Color Mix).

35

4.12 Dancer

Nodes Used: Key Input, Noise, Active Status Out, Animator Out, Float Filter

Associated Tutorial: Animators
Associated Kino Image Effect: Bloom

The Dancer scene consists of a colorful and dynamic environment where a human mannequin cycles through
two dance moves: the Brooklyn and the Flair.5 The color effects are achieved through a combination of
Directed Light objects of different colors arranged in the scene, and the Photomatic Effect and Bloom scripts
attached to the Main Camera. Animating the mannequin is done using the Animator and two FBX animation
files downloaded from Adobe’s Mixamo [5]. There are two main modules in the Klak patch: one for controlling
the animation, and the other for manipulating the lights and colors.

The animation sequence defined in the Animator, shown above, has two copies of the same FBX files: two
copies of Brooklyn and two copies of Flair.

5The commonly-used spelling for the dance move is “flare.” However, on Mixamo the animation is saved under the name
“flair.” Because of this, for consistency with the file names used in Unity, the spelling “flair” will be used.

36

Using the above module, it is not possible to repeatedly restart the same animation using the same Key Input

to Animator Out flow sequence. For example, if the A keyboard key is pressed, the animation sequence will
go to the Brooklyn animation. However, pressing A repeatedly does not create a glitchy or scratchy effect.
To overcome this, two of the same animation files were used in the sequence: Brooklyn and Brooklyn2, and
Flair and Flair2. The scratchy effect is then achieved by repeatedly pressing the two keys associated with the
animation. In the case of Brooklyn these are the A and S keys, and in the case of Flair, it is the Q and W keys.

The four Key Input nodes in the above module each produce a bang when one of A, S, Q, and R is pressed.
This action sends a bang out of the Key Down outlet of the appropriate Key Input node and into the Change
State inlet of Animator Out. In the Animator Out’s inspector, the string-valued entry called Change State
To has the same state name as the desired state name in the Animator.

Dancer’s second module controls the colors and lights. A Key Input node sends bangs to two Active Status

Out nodes when the D keyboard key is pressed and released, turning the Main Camera’s Photomatic and
Bloom effects off and on, respectively. Another Key Input node sends a value of 0.5 when it is pressed, and
0 otherwise, to the Main Camera’s Bloom effect. The consequence of the former is that all color and light
effects are stripped away, revealing the mannequin in full detail. The consequence of the latter is that the
brightness becomes concentrated on the dancer.

Lastly, Noise sends a continuous stream of pseudorandom values to the hue of the Main Camera’s Photomatic
effect. This causes the colors on the scene to drift.

37

4.13 Ramp

Nodes Used: Float Out, Float Filter, Axis Input, Vector Value, Rigidbody Out, Console Out,

Threshold

Associated Kino Image Effect: Ramp

In the Ramp scene, either a joystick or the keyboard left and right keys can be used (Axis Input) to move
the post-processing Ramp effect’s angle. However, doing so also causes the object in the middle of the scene
to begin rotating very subtly. If one direction of rotation is sustained for too long, the object will start to
move too far. Because most the patch’s functionality is present in other examples, attention is given only to
the Threshold node.

First, note that the Console Out node provides no function to the patch except for displaying data in the
console window. This node is crucial for debugging.

Axis Input produces a float value between -1 and 1. When the left arrow key is pressed (or the joystick is
pushed to the left), the node’s output values tend to -1, and when it is pushed to the right, the values tend
to 1. Hence, the first Threshold is activated only when Axis Input is pushed to the right long enough for it
to produce values above 0.5. The other Threshold is activated only then Axis Input is pushed to the left,
since these values first get multiplied by a −1 in Float Filter.

38

Once these thresholds have been met, a bang gets sent to Rigidbody Out nodes to push the object, using a
similar impact mechanism involving Vector Values as the Collider example.

4.14 Video

Nodes Used: Key Input, Float Out, Float Filter, Mouse Position Input, Video Player Out

Associated Tutorial: Video Player
Associated Kino Image Effect: Bloom

The Video scene displays a video by the Brazilian street dancing group Carreta Furacão. Various keyboard
keys allow the user to jump to specific timestamps of the video. Notice in the Klak patch how the Key Inputs
come in doubles. This is to allow the user to jump back and forth, creating a glitch effect, between very
similar timestamps.

The above module is very intuitive. Each of the keyboard inputs (Key Input) first bangs a Float Filter

so that the bangs become float-valued. More specifically, they become timestamps. Then, these float values
simply go into the time inlet of Video Player Out, which controls the Carreta Furacão video.

39

The last module in Video picks up the mouse’s x-axis position (Mouse Position Input), scales it by adding
0.5, and then sending it to the Main Camera’s Bloom image effect.

In other words, each pair of keys (Q, A), (W, S), (E, D), (R, F), and (T, G) cause the video to jump to very
similar positions in the video. Moving the mouse in the x direction causes the image to bloom its highlights
(left extreme of the mouse’s x-axis) or to become dark (the right extreme).

4.15 Wall

Nodes Used: Key Input, Mouse Position Input, Selector

Wall is by far the simplest scene in the examples. There is a wall of moving cubes and two cameras. The
Klak interaction consists only of switching between the two cameras, offering different points of view of the
scene.

As stated above, this is simplest scene in the examples. There are two Key Inputs, listening to the D and F
keyboard keys. When D is pressed, it activates the value 0 in the Float Filter, while F activates the value
1. Finally, these float values are sent to Selector, which simply selects one of two cameras in the scene,
providing alternative vantage points.

Notice how the cameras become activated and deactivated in the Object Hierarchy when the D and F keys
are pressed.

40

4.16 Warp

Nodes Used: Vector Input, Vector Out, Vector, Vector Components, Float Mix, Float Vector

Mix, Vector Mix

Warp resembles a space voyage in hyperdrive with twists and turns. It is composed of the Warp GameObject
which on its own produces a starry image.

The above module uses the Vector Input node to take the Main Camera’s position. This position is first
sent to the scale inlet of the Transform Out node, which is associated with the Warp GameObject. This
creates the sensation of the stars being stretched and pulled.

The initial position vector of the Main Camera is also decomposed through Vector Components to extract the
x and y vector values. These values are added in Float Mix, before being used to scale the original position
vector (Float Vector Mix). Finally, this vector is then added to the original position vector (Vector Mix)
before being sent to alter the rotation scale of the Brownian Motion script of the Main Camera.

41

Chapter 5

Short Tutorials

The tutorials in this chapter are split into two categories: those that utilize features within Unity (the first
four tutorials), and the single tutorial that requires using software outside of Unity (the last tutorial, which
uses Max MSP / Pure Data).

These tutorials are very short and to-the-point, and are meant to get the reader started using the explained
features. There are many resources on the internet containing tutorials and exercises that utilize these features,
and the reader is encouraged to study these features more deeply, and to practice creating patches that make
use of them.

5.1 Particle Systems

Particle systems are like geysers: they have a source from which particles emanate. The user has control
over the shape of the particles and many of their features, including the amount of particles, their durations,
the rate at which they are emitted over distance and over time, and many others. Wondrous objects can
be created using particle systems; choosing the right shape and adjusting the properties can create anything
from a field of grass to a nebula.

From the Unity Manual [11]:
“A particle system simulates and renders many small images or Meshes, called particles, to produce a visual
effect. Each particle in a system represents an individual graphical element in the effect. The system simulates
every particle collectively to create the impression of the complete effect.”

In other words, particle systems allow the user to create a “fog” made of images or meshes. The user has
extensive control over the properties of the individual components making up the fog.

Create a new scene and set the Clear Flags option of the Main Camera to Solid Color. Create a particle
system by either right clicking in the Hierarchy and selecting Particle System from Effects, or by clicking
GameObject from the Unity menu and selecting Particle System from Effects. Make sure the particle sys-
tem’s transform position is set to (0, 0, 0). When the scene is played, a simple geyser-type system of particles
should be emanating and shooting upwards.

WARNING: Make sure play mode is ended before making changes that are intended to persist.

42

With the particle system GameObject selected in the hierarchy, the system’s inspector will be displayed. This
is where specific changes to the system’s properties can be made.

The Particle System’s properties can be
found in the inspector, as shown on the
left.

This is a short tutorial meant to get the reader started with particle systems. As such, most details are omit-
ted and the reader is encouraged to explore the numerous particle system properties. Hovering the mouse
cursor over the name of the property in the inspector displays a short description of the property.

For example, the description for the Gravity Modifier says “Scales the gravity defined in Physics Manager.”
Change the Gravity Modifier from 0 to 1, and press play. What was before a geyser-type system shooting
upwards, with the particles never making their way back down, is now affected by gravity: the particles barely
make their way upwards before falling back down. Can the gravity be negative?

Note: The little button with a downward arrow to the right of some properties allows the user to change the
input from a constant value, to a random value. In some cases, the value can come from a curve, or between
two curves.

For another example, in the system’s inspector, open the emission module, and set the Rate Over Time to
100. This causes the system to emit a much larger amount of particles only dependent on time. On the
other hand, as it stands, changing the value of Rate Over Distance has no effect. This is because Rate Over

43

Distance only affects the emission of particles as the system moves in space.1

Altering the look of the particles is done through the renderer module (the last module in the system’s in-
spector). Open this module and change the default material “Default-Particle” either by dragging a material
object to the material slot, or by clicking the small circle to the right of the slot and selecting an available
material.2

Particle systems have many other properties under many other tabs. The small gray circle to the left of the
tab names indicate whether the tab and its properties are active (a small checkmark appears when the tab is
active). The reader is encouraged to explore these tabs and properties, and to come up with a rudimentary
(or complex!) particle system.

Once a working particle system is in place, create a Patch GameObject by right-click inside the hierarchy
and selecting Patch from Klak (this can also be done by clicking GameObject on the Unity menu). With
the patch object selected, open the Patcher through the object’s inspector. This will create a window for the
patcher that can be placed as a tab in another set of windows within the Unity environment.

This tutorial will give a brief explanation of how certain Klak nodes can be used to manipulate particle
systems. These nodes are Float Out, Event Out, and Particle System Out.3

Using Float Out with particle systems, the user is able to manipulate the following float-valued particle
system properties: time, start delay, playback speed, emission rate, start speed, start size, start rotation,
start lifetime, gravity modifier, and others.With Event Out, the user can effect “bang” style properties, such
as pause. Finally, with the Particle System Out node, the user is able to change the rate over distance and
the rate over time, as well as cause the system to emit more particles.

Some helpful tips:

Changing simulation space from local to world is useful when the particle system is attached to a moving
object. In local, the particle system is always following the object. In world, the particle system generator is
following the object, but the position of the particles and the way they fall (or rise) is dependent on where
they were generated in the world.

For start color, the default is a single color. By clicking the small downward arrow, a gradient or one of
several random options can be chosen instead.

Velocity Over Lifetime module: particles can have their velocity defined in terms of a specific vector, or
direction, over time. This way, instead of shooting straight up (like the default geyser), the particles can move
in other directions. Additionally, other properties such as rotation about the center of the system (formally
called Orbital, which can create spiral and cylindrical effects) is defined in this module.

The Emission module defines the emission of the particles. Particles can spawn over time, or over distance.
Additionally, particle bursts can wait for specific triggering events.

1One way to do this is to attach a script defining motion to the particle system.
2There are many free assets with materials made especially for particle systems, which are available in Unity’s Asset Store.

The reader is encouraged to search, discover, and load such assets into Unity to explore creating particle systems.
3Other Klak nodes can have interesting effects on particle systems and the reader is encouraged to explore these, some of

which are Bool Out, Color Out, Int Out, Rotation Out, Transform Out, String Out, and Vector Out.

44

A sample of commonly manipulated properties: duration, lifetime rotation, shapes, and speed.

5.2 Playable Director and Timelines

Associated Example: Bounce

Playable Director and Timelines let the user control animations that are created by defining static properties
of the animations at given periods of time. For example, to simulate a bounce, a sphere could have position
(0,1,0) at time 0, then (0,0,0) after 1 second, and then back to (0,1,0) after another second. Additionally, its
scale can be altered to reflect the deformation that happens when the sphere hits the ground, which in this
case would be the point (0,0,0). Unity will then, as smoothly as possible, animate the sequence.

From the Unity Manual [12]:

The Playable Director component stores the link between a Timeline instance and a Time-
line Asset. The Playable Director component controls when the Timeline instance plays, how the
Timeline instance updates its clock, and what happens when the Timeline instance finishes playing.

The Timeline Asset stores the information about the movements, deformations, and other forms of animation
that are defined along the timeline. The Timeline instance is a particular manifestation of the animation.
The bridge between the two is the Playable Director component, which tells the Timeline instance how to
behave according to the information recorded in the Timeline Asset.

Create an empty GameObject, recenter its transform position if necessary, and rename it to Timeline. In
the Window option of the toolbar, click Sequencer, then Timeline. Place the Timeline window where most
convenient in the Unity workspace. A suggestion for how to organize the Unity workspace is given in the
introduction.

With the Timeline window in view, click the empty GameObject, revealing the option (a “Create” button in
the Timeline window) to create a Director component and a Timeline asset. After choosing a name and loca-
tion, this will automatically create the objects for you and the empty GameObject is automatically assigned
to them. The empty GameObject now has two components, the Playable Director (which references the
timeline object you just created) and the Animator, which is verifiable in the empty GameObject’s inspector.

In the Playable Director component of the empty GameObject, we can control a few properties, such as Play
on Awake, and whether the animation should loop or play once. The Animator component is not needed (but
can be useful, which is currently not discussed in this documentation). In light of these, for the purpose of
this short introduction to Playable Director and Timelines, the Animator component can be removed from
the empty GameObject.

With the empty GameObject selected (which is named Timeline), in the Timeline window, the individual
timeline for the GameObject can be deleted. This is because the empty GameObject is not being animated,
it is being used as an organization scheme to control other animations. An alternative to all of this is to
create the Timeline Asset in the object that will be animated. The advantage of doing this with the empty
GameObject comes when managing multiple animations, since this method is a great for keeping track of all

45

of the timeline-style animations being created. So, delete the individual timeline for the GameObject.

At this point there are no longer any tracks. The simplest way to go forward from here involves dragging
the GameObject that will be animated into the empty track list in the Animator window, and then selecting
“Add Animation Track.” Create a Sphere object and drag it into the Timeline window, making sure that the
empty object named Timeline has been selected.

Now, click the record button. Here, the GameObject that is tied to the timeline can be manipulated to build
an animation. This is done by dragging the tab that indicates the frame (alternatively, seconds could be
selected by clicking the gear on the upper-right corner of the Timeline window). Drag the tab to the frame
you would like to change properties of the object (such as position, rotation, and scale), and change the
properties as desired. Create several of these to define the animation.

To later edit the specific frames (or seconds), double click on the timeline, which opens the Animation window,
where the specific frames/seconds keys can be changed.

Several animations can be added to the same timeline (or separate timelines can be created) by following a
similar process as described above.

A common effect that can be created with Playable Director and Timeline is to create a bounce or a wobble.
Unity will take care of extrapolating the in-between frames.

If the animation is being looped, it is important that the last frame defined matches with the first frame. In
this way, there won’t be a discontinuity between the first and last frames of the loop.

The Playable Director Out node, allows the user to manipulate the speed of the animation, jump to a
specific time of the animation (either objective time or normalized time, where the entire length of the ani-
mation is normalized to a length of 1 and real number values between 0 and 1 can specify a relative point in
time in the animation), and to play and stop the animation. More information can be found in the section of
Playable Director Out.

It is also possible to, in the timeline window, convert the animation with they key frames defined by right
clicking and selecting “convert to clip track” (it’s still changeable in the animator window). Now the user is
able to treat the entire animation as a single track, including the possibility to move the animation around
(useful for when there is more than one), copy and paste it, and change the length in time of the animation.

Here the user has additional options, for example, Animation Extrapolation, where the user can select “ping
pong” (among others) which will make the animation loop back and forth. This is important if in the same
timeline there is a clip track that goes longer than the selected clip track, so that the shorter clip does not
end and stay still, unless, of course, this is desired.

It is possible to group the tracks, by clicking Add (in the top-left corner) and then Track Group. This allows
the user to organize the timelines (for example, the objects that wobble, the objects that bounce, and even
have a Camera group using Activation Tracks).

Activation Tracks can be used with several objects such as cameras. In this situation two or more cameras
can be used, and a timeline can be made to activate and deactivate certain cameras.

46

5.3 Video Player

Associated Example: Video

Video Player allows the user to use video files in the Unity scene. These files are played on GameObjects
such as spheres, cubes, or others.

From the Unity Manual [18]:

Use the Video Player component to attach video files to GameObjects , and play them on the
GameObject’s Texture at run time.

First, a video file in an appropriate format is needed. The type of video file depends on the operating system
being used. More details can be found in the Unity manual [19]. Additionally, the GameObject that will play
the video must be added to the scene.

Once the video file is ready, and the GameObject has been created, a Video Player Object must be created
in the Object Hierarchy. This is done by selecting the GameObject option of Unity’s menubar, then selecting
Video followed by Video Player. Now, the video file must be dragged into or chosen in the Video Clip com-
ponent option in the Video Clip object’s inspector.

Lastly, changing the Render Mode in the Video Clip object’s inspector to Material Override allows using a
GameObject to display the video. Drag the GameObject that will be displaying the video into the Renderer
source in the Video Player Object’s inspector. The scene is ready to play the video file on the GameObject!

5.4 Animators

Associated Example: Dancer

Animators are used to connect animation files and are behind many interesting applications. This short
tutorial focuses on creating Unity projects that shift animation states. To achieve the goal of the tutorial,
several FBX files are needed (at least two).4

Once two or more FBX files have been downloaded, to keep the project organized, in the Assets folder, create
a folder for the animations (e.g., call it “Animations”). Drag the FBX files from wherever they are stored on
the computer into the newly created folder.

Notice that clicking on the arrow on the mid-right edge of the FBX file in the Unity folder reveals several
subfiles. The most important subfile that will be used in this tutorial is that with a rectangle containing a
play button in its center. Remember that these are the files that will be used to create the animation sequence.

Drag one of the downloaded FBX files into the Object Hierarchy. Notice how if the scene enters play mode,
the animation does not move. This is because the GameObject for the FBX file does not have an Animator
Controller.

Right click in the same folder to create an Animator Controller. Give it a name. With the object selected in
the Object Hierarchy, in its inspector, under the Animator component, an empty controller is revealed. Drag

4A great website for this end is Adobe’s Mixamo: https://www.mixamo.com/

47

the controller that has just been created into this slot.

If the Unity workspace does not already have an Animator window, go to Window>Animation>Animator.
Place this window where convenient, (recommendation: place it as a tab next to Scene, Game, and Asset
Store, as shown in the introduction). In this space, a network of transitions between animations can be cre-
ated. This space is where the rectangles with play buttons will be placed. Each of these separate animations
are called states. Transitions can be created from one state to another. Doing so and entering play mode will
result in the animation following these transitions.

An important thing is to name each of these states and give them tags. This will allow Klak to access the
animation states and jump from state to state. Connecting the states in a loop allows the animation to run
indefinitely, which may be desired. Klak can then be used to jump between states in the loop. Otherwise,
Klak can still jump between states, but the animation will end once the state ends.

The first image below shows a newly created Animator Controller, void of any states and transitions. The
image below it shows an Animator Controller with several states and a loop.

48

Although it may be hard to read, one of the above states is named “bboy,” which is an animated breakdance
sequence downloaded from Adobe’s Mixamo. To access these states with Klak, an Animator Out node must be
created and receive a bang input in its Change State inlet. The bang is what will trigger the change in anima-
tor states. In the node’s inspector, select the animator created during the exercise in the empty animator slot.
Still in the inspector, in the string box Change State To, write the name of the state (in this example: “bboy”).

The intention of this short introduction is to get the reader started in creating animator sequences and
accessing the states therein with Klak.

5.5 Pure Data and Max MSP

Pure Data (PD) and Max MSP (Max) are visual programming environments for creating interactive computer
music and multimedia installations. Both were created by Miller Puckette. PD is open source and free, and
Max is paid. There are good reasons to use either of them. Due to their visual nature, they are similar to the
Klak patching environment in Unity both visually and logically. Please note that if Videolab is being used
with the OP-Z and iPad, then, it may not possible to use PD or Max.

PD, Max, and Videolab all fascilitate interactive computer music. As such, it can be useful to use them
together. A person with high levels of expertise using Unity and scripting may be able to extend Klak’s
functionality internally. For others, however, it may be easier to use PD or Max to enhance the capabilities
of your Videolab creations.

The focus of this short section is on MIDI manipulation. Although Klak has a node for Note Input, it does
not receive input from the Pitch Bend parameters of MIDI controllers. A way to extend Note Input to
incorporate this functionality is to rework the scripts behind Klak. Another way is to build a PD or Max
patch that receives the Pitch Bend information and relays it to Unity.

The example of using Pitch Bend is easy enough. In Max, the input node is “bendin” and the output node
is “ctlout n,” where n is the appropriate knob number that will be communicating with Unity’s MIDIJack,
which comes with the Videolab package. Max’s “bendin” node knows to listen to MIDI Pitch Bend data.
The “ctlout n” node stands for control out, which sends MIDI control messages (i.e., knob messages), rather
than standard MIDI data. This distinction is important because Pitch Bend relies on a MIDI feature called
aftertouch, which allows continuous streams of values to be sent through the communication channel (which

49

is not possible with the standard MIDI-Out port).

In the image below, the intermediate node displays the number (that represents the pitch bend), and the
channel number used is 7. The 7 was chosen arbitrarily. Whatever number is chosen must be reflected in
the Knob Input node’s inspector, where the Knob Number is selected. Make sure that “Is Relative” is not
selected. It is also best to select “Direct” as the option for interpolator, since the pitch bend already comes in
a continuous stream that is sensitive to small changes.

The value in Unity is then received in Knob Input, and is output through the node’s “Value” output as a real
number between 0 and 1.

This is a very simple example, but very powerful, as now the pitch bend data can be used to further ma-
nipulate the Unity scene. Additional possibilities integrating Max and PD with Unity and Videolab include
using Wii controllers and Mocap. More details on Max and PD are unfortunately beyond the scope of this
document. The internet, however, is full of resources for those wanting to learn and add this extra layer to
their Unity MIDI projects.

50

Appendix A

Input

A.1 Input > MIDI > Knob Input

Description: Knob Input listens to a specified MIDI Channel (or all chan-
nels) and knob number for knob change sequences. The MIDI channel can be
manipulated via the inlet (Channel) or pre-defined in the inspector. When a
MIDI knob is turned and picked up by Knob Input, through the outlets, the
user may trigger a bang when the knob is activated (On) or deactivated (Off),
and propagate the numerical value of the turning knob (Value).

Inlet: Channel (float)
Outlets: On (bang), Off (bang), Value (float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Source - The MIDI source is specified by dragging
the MIDI Source Object in the object hierarchy
to Source in the node’s inspector, or by clicking
the small circle (to the right) and selecting the ob-
ject. Note that a MIDI Source Object must exist
in the object hierarchy. If there is only one MIDI
source connected to the computer, this feature is
automatic (so the existence of the object is not re-
quired). In other cases, it is useful for restricting
which MIDI source should be interpreted for the
node.

Channel - The MIDI channel may be altered during runtime by sending floats to the Channel inlet of the
Knob Input node. Alternatively, it may be specified in the inspector. There are 16 channels and an option
for all channels. Note that the Channel inlet receives floats rather than integers. The node rounds floats up
and all values below 1 get mapped to 1, and above 16 to 0.

Knob Number - An integer between 0-15 must be chosen to reflect the desired knob.

51

Is Relative - If this checkbox is activated, the knob values are relative to their starting point upon turning.
Otherwise, they are absolute values.

Interpolator - Interpolators are methods of transitioning between values. This can be done directly by
jumping from one value to another, or smoothly by following a curve. A dropdown menu contains the
options Direct, Exponential, and Damped Spring. The latter two have an option for speed.

Lists - Summary of the node’s output connections.

Examples:

MIDIKlak [2]: Knob Event (Trigger), Knob Event (Value)

YouTube: Ninety Six, Milo

52

A.2 Input > MIDI > Note Input

Description: Note Input listens to a specified MIDI Channel (or all channels)
for note-on and note-off messages. The MIDI channel can be manipulated
via the inlet (Channel) or pre-defined in the inspector. When a MIDI note is
played and picked up by Note Input, through the outlets, the user may trigger
a bang when the note is pressed (Note On) or released (Note Off), propagate
the numerical MIDI note value when the note is pressed (Note On Number),
propagate the numerical MIDI note velocity when the note is pressed (Note
On Velocity), and finally, send float values that are pre-defined in the inspector
both for when the note is pressed (On Value) and released (Off Value).

Inlet: Channel (float)
Outlets: Note On (bang), Note On Numer (float), Note On Velocity (float),
Note Off (bang), Value (float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Source - The MIDI source is specified by dragging
the MIDI Source Object in the object hierarchy
to Source in the node’s inspector, or by clicking
the small circle (to the right) and selecting the ob-
ject. Note that a MIDI Source Object must exist
in the object hierarchy. If there is only one MIDI
source connected to the computer, this feature is
automatic (so the existence of the object is not re-
quired). In other cases, it is useful for restricting
which MIDI source should be interpreted for the
node.

Channel - The MIDI channel may be altered dur-
ing runtime by sending floats to the Channel inlet of
the Note Input node. Alternatively, it may be spec-
ified in the inspector. There are 16 channels and an
option for all channels. Note that the Channel in-
let receives floats rather than integers. The node
rounds floats up and all values below 1 get mapped
to 1, and above 16 to 0.

Note Filter - The user may impose a note filter, which is done in the inspector. If the filter is off, any
played note will activate Note Input. Otherwise, the option of Note Name allows the user to specify which
note (C, C#, D, D#, E, F, F#, G, G#, A, A#, B) will activate Note Input, and Note Number allows the
user to specify a range of MIDI note numbers which will activate the node.

Velocity Curve - The curve maps the velocity value to a user-defined curve.

On Value - This value is pushed out of the Value outlet when the specified note (or any note when
unspecified) is pressed.

Off Value - Same as On Value but when the note is released.

53

Interpolator - Interpolators are methods of transitioning between values. This can be done directly by
jumping from one value to another, or smoothly by following a curve. A dropdown menu contains the
options Direct, Exponential, and Damped Spring. The latter two have an option for speed.

Lists - Summary of the node’s output connections.

Examples:

MIDIKlak [2]: Knob Event (Trigger), Knob Event (Value)

YouTube: Ninety Six, Milo

VideolabTest-master [2]: Adam, Boing, Peeler, Poly, Primitive, Sphere, Splash, Stripe, Text1, Text2,
Tilt Brush, Trail, Worm

54

A.3 Input > MIDI > Sequencer Input

Description: Details on the Sequencer Input node are omitted from this
documentation because:

1. This node requires a MIDI sequencer (such as the OP-Z).

2. The author does not own a MIDI sequencer.

Inlets: None
Outlets: Clock (bang), Start (bang), Continue (bang), Stop (bang), Playing
(float), Step (float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Source - The MIDI source is specified by dragging
the MIDI Source Object in the object hierarchy
to Source in the node’s inspector, or by clicking
the small circle (to the right) and selecting the ob-
ject. Note that a MIDI Source Object must exist
in the object hierarchy. If there is only one MIDI
source connected to the computer, this feature is
automatic (so the existence of the object is not re-
quired). In other cases, it is useful for restricting
which MIDI source should be interpreted for the
node.

List - Summary of the node’s output connection.

Example:

YouTube: Andy

55

A.4 Input > MIDI > Videolab Input

Description: Details on the Videolab Input node are omitted from this
documentation because:

1. This node requires the OP-Z sequencer and synthesizer.

2. The author does not own the OP-Z sequencer and synthesizer.

The readers are encouraged to fill this page with necessary details. More infor-
mation can be found on the teenageengineering GitHub wiki.

Inlets: None
Outlets: Active Track (float), Active Pattern (float), Active Project (float),
Master Volume (float), Battery Level (float), Tempo (float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Source - The MIDI source is specified by dragging
the MIDI Source Object in the object hierarchy
to Source in the node’s inspector, or by clicking
the small circle (to the right) and selecting the ob-
ject. Note that a MIDI Source Object must exist
in the object hierarchy. If there is only one MIDI
source connected to the computer, this feature is
automatic (so the existence of the object is not re-
quired). In other cases, it is useful for restricting
which MIDI source should be interpreted for the
node.

List - Summary of the node’s output connection.

56

A.5 Input > Axis Input

Description: Axis Input can be thought of as a joystick input, with capa-
bilities of capturing directional keyboard or mouse movements. The default
string in Axis Name is Horizontal, which outputs a -1 at the left horizontal
extreme of the joystick (or keyboard direction keys) and all in between values,
with 0 for the neutral position, and +1 for the right horizontal extreme. Other
options for Axis Name are Vertical, Mouse X, and Mouse Y. Vertical captures
the vertical joystick movements, with extremes of vertical down being -1 and
vertical up being +1. Mouse X and Mouse Y are analogous to Horizontal and
Vertical, but map the extreme mouse locations to the respective values.

Inlets: None
Outlet: Value (float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Axis Name - The options for Axis Name are Hor-
izontal, Vertical, Mouse X, and Mouse Y.

Interpolator - Interpolators are methods of tran-
sitioning between values. This can be done directly
by jumping from one value to another, or smoothly
by following a curve. A dropdown menu con-
tains the options Direct, Exponential, and Damped
Spring. The latter two have an option for speed.

List - Summary of the node’s output connection.

Example:

VL_Examples: Ramp

57

A.6 Input > Generic > Bool Input

Description: Bool Input receives a boolean value (0 or 1) from a selected
GameObject and propagates it through the Value outlet. Once a GameOb-
ject is selected, a hierarchy is unveiled allowing one to select the desired ob-
ject’s boolean property. For example, if the selected GameObject is the Main
Camera, the user is then able to select the specific component of the camera
(Transform, Camera, or AudioListener), which then allows the user to select
the desired property. Note that the functionality of this node is oftentimes not
intuitive, and that hidden object properties may appear under the unveiled
hierarchy, so exploration is encouraged.

Inlets: None
Outlet: Value (float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Target - A target GameObject must be selected,
from which the desired boolean property to be prop-
agated is chosen.

List - Summary of the node’s output connection.

Example: Me1

58

A.7 Input > Generic > Float Input

Description: Float Input receives a float value from a selected GameObject
and propagates it through the Value outlet. Once a GameObject is selected,
a hierarchy is unveiled allowing one to select the desired object’s float-valued
property. For example, if the selected GameObject is the Directional Light,
the user is then able to select the specific component of the light (Transform
or Light), which then allows the user to select the desired property. Note that
the functionality of this node can sometimes be non-intuitive, and that hidden
object properties may appear under the unveiled hierarchy, so exploration is
encouraged.

Inlets: None
Outlet: Value (float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Target - A target GameObject must be selected,
from which the desired float-valued property to be
propagated is chosen.

List - Summary of the node’s output connection.

Example: Me1

59

A.8 Input > Generic > Float Value

Description: Float Value continuously outputs a user-defined float value
through the Value outlet.

Inlets: None
Outlet: Value (float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Float Value - Value that this node will continu-
ously output through the Value outlet.

List - Summary of the node’s output connection.

Examples:

VL_Examples: Bounce, ColorCubes

60

A.9 Input > Generic > Int Input

Description: Int Input receives an int value from a selected GameObject
and propagates it through the Value outlet. Once a GameObject is selected,
a hierarchy is unveiled allowing one to select the desired object’s int-valued
property. For example, if the selected GameObject is the Main Camera, the
user is then able to select the specific component of the camera (Transform,
Camera, or AudioListener), which then allows the user to select the desired
property. Note that the functionality of this node can sometimes be non-
intuitive, and that hidden object properties may appear under the unveiled
hierarchy, so exploration is encouraged.

Inlets: None
Outlet: Value (float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Target - A target GameObject must be selected,
from which the desired int-valued property to be
propagated is chosen.

List - Summary of the node’s output connection.

Example: Me1

61

A.10 Input > Generic > Vector Input

Description: Vector Input receives a 3D vector from a selected GameObject
and propagates it through the Value outlet. Once a GameObject is selected, a
hierarchy is unveiled allowing one to select the desired object’s boolean prop-
erty. For example, if the selected GameObject is a simple cube, the user is
then able to select the specific component of the cube (Transform, MeshFilter,
MeshRenderer, or BoxCollider), which then allows the user to select the desired
property. Note that the functionality of this node is oftentimes not intuitive
(sometimes it is!), and that hidden object properties may appear under the
unveiled hierarchy, so exploration is encouraged.

Inlets: None
Outlet: Value (vector3)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Target - A target GameObject must be selected,
from which the desired vector-valued property to be
propagated is chosen.

List - Summary of the node’s output connection.

Example:

VL_Examples: Warp

62

A.11 Input > Generic > Vector Value

Description: Vector Value continuously outputs a user-defined 3D vector
through the Value outlet.

Inlets: None
Outlet: Value (vector3)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Vector Value - User-defined vector value that the
node will continuously output.

List - Summary of the node’s output connection.

Examples:

VL_Examples: Collider, Ramp

63

A.12 Input > Button Input

Description: Button Input can be thought of as a joystick / gamepad input,
with capabilities of capturing keyboard or mouse input. The default string in
Button Name is Jump. For details on how the keyboard and mouse are mapped
to button names, and to change these mappings (and the button names) ac-
cording to the user’s preference, the user should click Edit in Unity’s menu,
then select Input from Project Settings.

Inlets: None
Outlet: Button Down (bang), Button Up (bang), Value (float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Button Name -

Off Value - User-defined value that is continuously
sent through the Value outlet while the button is
not being pressed.

On Value - User-defined value that is continuously
sent through the Value outlet while the button is
being pressed.

Interpolator - Interpolators are methods of tran-
sitioning between values. This can be done directly
by jumping from one value to another, or smoothly
by following a curve. A dropdown menu con-
tains the options Direct, Exponential, and Damped
Spring. The latter two have an option for speed.

List - Summary of the node’s output connection.

Example: Same as Key Input

64

A.13 Input > Component > Collider Input

Description: Collider Input receives collision events from GameObjects
that have a collider component. For example, cubes hitting each other, or
spheres bouncing on a plane. The node sends bang messages out of its various
outlets, each for specific scenarios of the collision.

Inlets: None
Outlet: Collision Enter (bang), Collision Stay (bang), Collision Exit (bang),
Trigger Enter (bang), Trigger Stay (bang), Trigger Exit (bang)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Collider - A target GameObject with a collider
component must be selected, from which the col-
lider events will be received and propagated through
the chosen outlet(s).

List - Summary of the node’s output connection.

Example:

VL_Examples: Collider

65

A.14 Input > Component > Transform Input

Description: Transform Input receives information from the Transform
properties of a GameObject: position, rotation, and scale. When the game
runs, the node propagates the initial value through the wires and updates the
value according to changes to the appropriate GameObject’s transform data.
There is an option to use local values, which is important only in the case of
the selected GameObject being a child of a parent object. In such a case, if the
option is selected, the values are calculated in relation to the parent object’s
transform value, and not in reference to the global scene. If the option is se-
lected when the object is not a child, it produces the same values as when the
option is not selected.

Inlets: None
Outlet: Position (vector3), Rotation (quaternion), Scale (vector3)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Transform - A target GameObject must be se-
lected, from which the transform values will be re-
ceived and propagated through the chosen outlet(s).

Use Local Values - Checkbox to select whether to
use the global transform values or to use values rel-
ative to a parent object. If no parent object exists,
using local values has no effect.

List - Summary of the node’s output connection.

Examples:

VL_Examples: Bounce, Collider

66

A.15 Input > UI Event > Drag Event Input

Description: Drag Event Input receives float information from a UI element
that is being dragged, with options for the direction of the movement: hori-
zontal, vertical, radial, and angular. A UI element must be selected in Drag
Event Input’s inspector. The option for Axis reflects the possible directions
of movement. The value pre-defined as the range serves as the denominator
the drag’s produced values, i.e., higher values of the range make the drag’s
produced values smaller. The checkbox “Relative” produces values relative to
the canvas (when checked) or global values (when unchecked).

Inlets: None
Outlet: Value (float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Trigger Rect - A target Rect Transform from a UI
element must be selected. It is from this component
that the dragging activity will be picked up.

Axis - Drop down menu with options for how to
interpret the dragging: Horizontal, Vertical, Radial,
and Angular.

Relative - If this checkbox is activated, the values
are scaled relative to the canvas. Otherwise, they
are absolute values.

Range - User-defined range that divides the pro-
duced values.

List - Summary of the node’s output connection.

Example: MeUI

67

A.16 Input > UI Event > Tap Event Input

Description: Tap Event Input detects when a UI element has been pressed
and released, sending a bang through its outlets when these activities occur.

Inlets: None
Outlet: Down Event (bang), Up Event (bang)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Trigger Rect - A target Trigger Rect from a UI
element must be selected. It is from this component
that the tapping activity will be picked up.

List - Summary of the node’s output connection.

Example:

VL_Examples: Button

68

A.17 Input > Gyro Input

Description: Gyro Input receives gyroscope details from an appropriate de-
vice (e.g., smartphones and tablets). The available gyroscopic data are attitude,
acceleration, and gravity. These are, respectively, the device’s orientation in
space, the speed at which the device is moving, and the direction of gravity as
a vector.

Inlets: None
Outlets: Attitude (quaternion), Acceleration (vector3), Gravity (vector3)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

List - Summary of the node’s output connection.

69

A.18 Input > Key Input

Description: Key Input listens for a single keyboard key to be pressed (spec-
ified through the Key Code dropdown menu), and triggers bangs when the key
is pressed (Key Down) and released (Key Up), and sends float values for these
same events (Value). The float values are defined in the node’s inspector: Off
Value is the value that will be propagated through the Value outlet when the
key is released, and On Value is the value that will be propagated when the
key is pressed.

Inlets: None
Outlet: Key Down (bang), Key Up (bang), Value (float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Key Code - Dropdown menu of keyboard charac-
ters

Off Value - Float input, gets sent out at Value
when key is released.

On Value - Same as Off Value but when note is
pressed.

Interpolator - Interpolators are methods of tran-
sitioning between values. This can be done directly
by jumping from one value to another, or smoothly
by following a curve. A dropdown menu con-
tains the options Direct, Exponential, and Damped
Spring. The latter two have an option for speed.

List - Summary of the node’s output connection.

Examples:

VideolabTest-master [2]: Adam, Peeler, Sphere, Splash, Stripe, Text2, Tilt Brush, Trail, Worm

VL_Examples: Dancer, Video, Wall

70

A.19 Input > Mouse Button Input

Description: Mouse Button Input listens for a mouse button click. One of
three options can be specified in Button Index in the node’s inspector: 0, 1,
or 2. Usually, 0 is the left mouse button (primary button), 1 is the middle
button, and 2 is the right button (secondary button). A bang is triggered and
sent out the Button Down outlet when the specified mouse button is clicked
and through the Button Up outlet when the button is released. Float values
for these same events– click and release– are defined in the node’s inspector
and propagated out the Value outlet.

Inlets: None
Outlets: Button Down (bang), Button Up (bang), Value (float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Button Index - String form to define which mouse
button activity will be received by the node. The
possible entries are 0, 1, or 2, for the left button
(primary button), middle button, or right button
(secondary button), respectively.

Off Value - Float value defined to be propagated
through the Value outlet when the defined mouse
button is released.

On Value - Float value defined to be propagated
through the Value outlet when the defined mouse
button is pressed.

Interpolator - Interpolators are methods of tran-
sitioning between values. This can be done directly
by jumping from one value to another, or smoothly
by following a curve. A dropdown menu con-
tains the options Direct, Exponential, and Damped
Spring. The latter two have an option for speed.

List - Summary of the node’s output connection.

Example:

VideolabTest-master [2]: Peeler

71

A.20 Input > Mouse Position Input

Description: Mouse Position Input receives the x and y coordinates of the
mouse cursor.

Inlets: None
Outlet: X (float), Y (float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Interpolator - Interpolators are methods of tran-
sitioning between values. This can be done directly
by jumping from one value to another, or smoothly
by following a curve. A dropdown menu con-
tains the options Direct, Exponential, and Damped
Spring. The latter two have an option for speed.

List - Summary of the node’s output connection.

Example:

VL_Examples: Video, Wall

72

A.21 Input > Noise

Description: Noise uses Unity’s Perlin noise to continuously generate pseu-
dorandom numbers between -1 and 1. These random numbers can be further
manipulated through the Frequency, Octave, Bias, and Amplitude, all of which
are defined in the node’s inspector. The generated output is (Noise + Bias) ×
Amplitude. Behind the scenes, Frequency scales time so that if the frequency
is doubled, for example, the underlying pattern changes at twice the speed.
Roughly, Octave combines several iterations of noise to generate more complex
forms of randomness, where the octaves progressively get smaller. In other
words, Frequency and Octave change the actual pseudorandom values gener-
ated, while Bias and Amplitude scale this generated value. Note that this is
different from Random Value in two significant ways: Noise continuously gen-
erates pseudorandom values using Unity’s Perlin noise, while Random Value
generates a uniformly distributed pseudorandom value only when it receives a
bang (with the option to send such a value when the game starts).

Inlets: None
Outlet: Output (float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Frequency - Float input that defines the fre-
quency.

Octaves - Slider allowing the user to choose be-
tween 8 integer octaves (1-8).

Bias - Float input that will scale the noise.

Amplitude - Float input that will scale the noise.

List - Summary of the node’s output connection.

Example:

VL_Examples: ColorCubes, Dancer

73

A.22 Input > Random Value

Description: Random Value uses Unity’s uniformly distributed Range pseu-
dorandom number generator to generate single values between a user-defined
range each time the node receives a bang. Note that this is different from Noise
in two significant ways: Random Value generates a uniformly distributed pseu-
dorandom value only when it receives a bang (with the option to send such a
value when the game starts), while Noise continuously generates pseudoran-
dom values using Unity’s Perlin noise.

Inlet: Bang (bang)
Outlet: Output (float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Minimum - User-defined lower bound for the pseu-
dorandom number generator.

Maximum - User-defined upper bound for the
pseudorandom number generator.

Send On Start Up - Check-box. If selected, will
output a pseudorandom number when the game
starts.

List - Summary of the node’s output connection.

Examples:

VideolabTest-master [2]: Adam, Primitive, Splash, Stripe, Text2, Trail, Worm

74

A.23 Input > Starter

Description: Starter sends a bang (or an int value of 1) in three situations:
when the game starts (through the On Start outlet), when the node is enabled
(through the On Enabled outlet), and when the node is disabled (through the
On Disabled outlet). Because there is no inlet to the node, it is only possible
to trigger the On Enabled and On Disabled messages by accessing Starter’s
active status through alternative means. Some of Klak’s nodes have a check-
box allowing the user to select whether the node should send messages as soon
as the game starts. Starter is useful for triggering nodes at start-time that do
not have this option.

Inlets: None
Outlet: On Start (bang), On Enabled (bang), On Disabled (bang)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

List - Summary of the node’s output connection.

Examples:

VideolabTest-master [2]: Poly

75

Appendix B

Output

B.1 Output > MIDI > Knob Out

Description: Details on the Knob Out node are omitted from this documen-
tation because:

1. This node requires a MIDI device with knobs (such as the OP-Z).

2. The author does not own a MIDI device with knobs.

The readers are encouraged to fill this page with necessary details.

Inlet: Channel (float), Absolute Value (float), Delta (float)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Destination - Unity is oftentimes able to handle
this automatically. However, in cases where the
user has several MIDI destinations and would like
to limit the outgoing information to a specific de-
vice, a MIDI Destination GameObject can be cre-
ated by accessing the GameObject > MIDIJack >
MIDI Destination.

Channel - The default option “All” ensures that
any channels that are listening will receive the MIDI
message. This is also able to accommodate situa-
tions where the user would like to limit the infor-
mation being sent to a specific channel.

Knob Number - An integer value between 0-15
specifies which knob will be manipulated by the
node.

76

B.2 Output > MIDI > Note Out

Description: Note Out combines separate pieces of MIDI information (the
channel, note number, velocity, and information about note on and off) into a
MIDI message that is sent to a device (e.g., a MIDI controller or DAW) that is
able to receive and interpret these messages. The node is intuitive in the sense
that it receives these pieces of information through its inlets and sends it to
the selected MIDI destination defined in the node’s inspector.

Inlets: Channel (float), Note Number (float), Velocity (float), Note On (bang),
Note Off (bang)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Destination - Unity is oftentimes able to handle
this automatically. However, in cases where the
user has several MIDI destinations and would like
to limit the outgoing information to a specific de-
vice, a MIDI Destination GameObject can be cre-
ated by accessing the GameObject > MIDIJack >
MIDI Destination.

Channel - The default option “All” ensures that
any channels that are listening will receive the MIDI
message. This is also able to accommodate situa-
tions where the user would like to limit the infor-
mation being sent to a specific channel.

Note Number - The user is able to use a pre-
defined MIDI note number that gets sent to the
MIDI destination whenever the node’s Note On in-
let receives a bang. This value can be changed dur-
ing runtime by sending floats to the Note Number
inlet.

Velocity - The user is able to use a pre-defined
MIDI velocity that gets sent to the MIDI destina-
tion whenever the node’s Note On inlet receives a
bang. This value can be changed during runtime by
sending floats to the Velocity inlet. Usually MIDI
velocities are whole numbers between 0 and 127.
This node, however, scales the velocities to floats
between 0 and 1.

77

B.3 Output > MIDI > Sequencer Out

Description: Details on the Sequencer Out node are omitted from this doc-
umentation because:

1. This node requires a MIDI sequencer (such as the OP-Z).

2. The author does not own a MIDI sequencer.

The readers are encouraged to fill this page with necessary details.

Inlet: Clock Tick (bang), Start Playback (bang), Resume Playback (bang),
Stop Playback (bang)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Destination - Unity is oftentimes able to handle
this automatically. However, in cases where the
user has several MIDI destinations and would like
to limit the outgoing information to a specific de-
vice, a MIDI Destination GameObject can be cre-
ated by accessing the GameObject > MIDIJack >
MIDI Destination.

78

B.4 Output > Videolab > Webcam Manager Out

Description: Webcam Manager Out can stream the feed from a webcam on
a 3D object or a UI canvas. This is done by creating an empty GameObject
and adding the Webcam Manager component to it through its inspector. This
will then give the option to select the appropriate input webcam device. A
material must be created and added to the GameObject with the Webcam
Manager component. This links the material to the webcam feed. Whenever
this material is added to other objects, (e.g., a cube), the feed will be displayed
on the object.1 For information on displaying the webcam feed on a UI compo-
nent, see the teenageengineering GitHub wiki. The Webcam Manager Out node
allows manipulation of the webcam feed through its various inlets. The Device
Index inlet receives floats that choose from the possibly numerous appropriate
devices. Play and Stop can each receive a bang, causing the feed to play or
stop, respectively. The empty GameObject with the Webcam Manager com-
ponent must be added to the Webcam Manager Out’s Webcam Manager slot in
the inspector.

Inlet: Device Index (float), Play (bang), Stop (bang)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Webcam Manager - A target GameObject with
a Webcam Manager component must be selected.

Example:

VL_Examples: Webcam

1This information was taken from the teenageengineering GitHub wiki [cite].

79

B.5 Output > Selector

Description: Selector allows toggling through various GameObjects, by
turning their active status on or off. In the Selector’s inspector, the user de-
fines the object array size, which will create an array with the selected number
of slots for GameObjects. The float input is rounded down to match the num-
bers 1, 2, . . . , n, where n is the user-defined number of objects. If the option
Select First On Start is not on, all active statuses are preserved until Selector
starts receiving floats through its input. If it is on, no matter what the active
statuses are, all will be turned off except for the GameObject in Element 0 of
Selector’s inspector.

Inlet: Parameter (float)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Object Array Size - Int input that defines the
number of GameObject slots.

Element i - For each integer i between 0 and the
object array size (minus 1, since the count starts at
0), there is a slot to select GameObjects.

Select First on Start - Checkbox so that first
object is selected on start. If it is on, all objects
when the game runs are turned off, except Element
0. If it is off, all active statuses are preserved until
Selector starts receiving floats through its inlet.

Example:

VL_Examples: Wall

80

B.6 Output > Component > Active Status Out

Description: Active Status Out toggles the active status of a selected
GameObject or object component. The difference is turning an entire GameOb-
ject on or off, or toggling just one of its components. Note that the same Active
Status Out node can toggle the active status of a particular GameObject and
a component of an entirely different object. The node has two bang inlets:
Enable and Disable, which turn the GameObject’s active status on and off,
respectively.

Inlets: Enable (bang), Disable (bang)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Target Component - When a GameObject is se-
lected, a dropdown menu is unveiled, allowing the
user to select the specific component to be toggled
by the node.

Target GameObject - A target GameObject is
selected to be toggled by the node.

Examples:

VL_Examples: Collider, Dancer

81

B.7 Output > Component > Animator Out

Description: Animator Out allows control of an Animator Controller Asset
through manipulation of its speed, selection of where to begin (or jump to)
within the animated sequence, and ability to change the state of the animation
(i.e., the animation sequence to play). A brief tutorial on Animators is given
at the end of this document. The Speed inlet receives a float and adjusts the
speed of the animation accordingly, in an intuitive way. The Normalized Time
inlet receives a float between 0 and 1, where 0 is mapped to the beginning
of the animation, and 1 to the end; this way, the value of 0.5, for instance,
gets mapped to precisely the midpoint of the animation, for all animations,
independent of their lengths. The Change State inlet is activated with a bang,
and changes the state of the animation according to a string defined in the
inspector that matches one of the animation states (i.e., animation sequence).

Inlets: Speed (float), Normalized Time (float), Float Parameter (float),
Change State (bang)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Animator - A target animator component must
be selected, upon which control of the anima-
tion through the inlets and the node operations is
achieved.

Change State To - The string entered here must
match state name within the Animator Controller
Asset. When the Change State inlet receives a
bang, the Animator Controller Asset will jump to
this animation sequence.

Parameter Name - The string entered here re-
flects the name of the parameter the user desires to
use.

Examples:

VL_Examples: Dancer

YouTube: Andy, Milo

82

B.8 Output > Component > Particle System Out

Description: Particle Systems Out allows control of a Particle System
through manipulation of its rate over distance and time, and forcing the system
to emit particles. A brief tutorial on Particle Systems is given at the of this
document. The inlet Rate Over Distance receives a float which affects the rate
at which the particle system’s emitter generates new particles over distance,
i.e., as the emitter moves. The inlet Rate Over Time is similar, where the float
instead affects the rate at which the particle system’s emitter generates new
particles over time (this does not require movement). For example, dirt parti-
cles should be generated as an object moves along a dirt field (which happens
with Rate Over Distance). On the other hand, if the object is standing still it
would not make sense for dirt particles to be emitted (which would happen with
Rate Over Time). Behind the scenes, both of these manipulate the Emission
module of the particle system. Finally, the inlet Emit receives a bang causing
the particle system to emit more particles.

Inlet: Rate Over Distance (float), Rate Over Time (float), Emit (bang)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Particle System - A target Particle System Com-
ponent must be selected, upon which the rate over
distance and time can be manipulated, and the sys-
tem can be forced to emit more particles.

Examples:

VideolabTest-master [2]: Primitive, Splash, Text1, Trail

83

B.9 Output > Component > Playable Director Out

Description: Playable Director Out allows control of a Playable Director
and associated Timeline Object. Through this ensemble it is possible to create
animations by defining the state of the objects that are being animated along
specific periods of time. Unity then “fills in the blanks." More information
can be found in a short tutorial at the end of this document. The Playable
Director Out node allows control of the animation through manipulation of
its speed, selection of a specific instance of time or a normalized unit of time
(i.e., the exact time in seconds where the animation should jump to or the
normalized time where 0 represents the beginning and 1 the end), and by
playing or stopping the animation sequence.

Inlet: Speed (float), Time (float), Normalized Time (float), Play (bang), Stop
(bang)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Playable Director - A target Playable Director
component must be selected, upon which control
of the animation through the inlets and the node
operations is achieved.

Example:

VL_Examples: Bounce

84

B.10 Output > Component > Rect Transform Out

Description: Rect Transform Out allows manipulation of a Rect Transform
Object. The rect transform is the 2D extension of the standard transform,
which is centered around a point (1D). The rect transform is rectangle wherein
UI elements are placed. The inlets of Rect Transform Out allow the user to
manipulate the chosen Rect Transform Component’s anchored position (the
position of the object relative to its set anchors), its size delta (the size of the
object relative to its anchors), and its uniform scale.

Inlets: Anchored Position (vector3), Size Delta (vector3), Uniform Scale
(float)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Target Transform - A target Rect Transform
component must be selected, upon which control
of its anchored position, size delta, and scale is
achieved.

Add to Original - When this checkbox is active,
the new values do not replace the original values,
but add to them.

Example:

VL_Examples: Button

85

B.11 Output > Component > Rigidbody Out

Description: Rigidbody Out allows the user to manipulate the Rigidbody
component of a GameObject. Objects with a Rigidbody component go through
physics simulations, meaning, for instance, that the object is affected by gravity
and impacts. In other words, such an object’s motion will be dictated at least
partly by Unity’s physics engine. Through the Rigidbody Out node, the user
can directly send data to an object’s Rigidbody component. More precisely,
these data detail the force being applied to the object and the point of impact.
The Bang inlet of the node immediately applies the defined force at the defined
point of impact.

Inlets: Force (vector3), Point of Impact (vector3), Bang (bang)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Rigidbody - A target GameObject with Rigid-
body Component must be selected, upon which the
selected force can be applied.

Force Mode - A dropdown menu gives the user a
choice of Force, Impulse, Velocity Change, or Accel-
eration, as the way in which the node will interpret
the force vector received through the Force inlet.

Use Local POI - A checkbox allowing the user the
choose whether the point of impact will be local (if
there is a parent) or global.

Examples:

VL_Examples: Collider, Ramp

86

B.12 Output > Component > Transform Out

Description: Transform Out allows the user to manipulate a desired
GameObject’s transform information: its position, rotation, scale, and uniform
scale.

Inlet: Position (vector3), Rotation (quaternion), Scale (vector3), Uniform
Scale (float)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Target Transform - A target GameObject must
be selected whose transform will be manipulated by
the node.

Add to Original - An intuitive checkbox. If
checked, the values received by the various inlets
of the node are added to the original values. Oth-
erwise, they replace the original value.

Examples:

VideolabTest-master [2]: Adam, Boing

VL_Examples: Bounce

MIDIKlak [2]: Knob Event (Trigger), Knob Event (Value), Note Event (Trigger), Note Event (Value)

YouTube: Ninety Six, Milo

87

B.13 Output > Component > Video Player Out

Description: Video Player Out allows the user to manipulate a Video Player
object, which does exactly what its name entails: play videos. Through the
node’s various inlets the user is able to change the speed of the video playback,
jump to a specific point in time (absolute or relative), and play or stop the
video.

Inlet: Speed (float), Time (float), Normalized Time (float), Play (bang), Stop
(bang)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Video Player - A target Video Player Compo-
nent must be selected, upon which control of the
video through the inlets and the node operations is
achieved.

Example:

VL_Examples: Video

88

B.14 Output > Generic > Bool Out

Description: Bool Out sends a boolean value to an appropriate boolean prop-
erty of a GameObject. Once a GameObject has been selected in Bool Out’s
inspector, a menu hierarchy is unveiled, allowing the user to select the specific
property of the GameObject that will be manipulated.

Inlet: Input (float)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Target - A target GameObject must be selected to
receive the boolean value.

Example: Me1

89

B.15 Output > Generic > Color Out

Description: Color Out receives a color input and sends it to an appropriate
GameObject. These include the camera background color and the light color.
For this node to work with the camera, the camera’s Clear Flags option must
be set to solid color. In Color Out’s inspector, a target component must be
selected (the camera or the light). Below are images of the inspector showcasing
when the camera and the light are selected in Color Out’s inspector.
Open Question: Does Color Out control anything beyond the camera back-
ground color and the light color? All material colors are controlled by Material
Color Out.

Inlet: Input (color)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Target - Possible target GameObjects include the
camera and the light. Once a GameObject is cho-
sen, the correct component and property must be
selected so that the node successfully manipulates
the object’s color.

Examples:

VideolabTest-master [2]: Primitive, Trail, Worm

VL_Examples: Button

90

B.16 Output > Generic > Console Out

Description: Console Out prints the values received through its inlets to the
console. The purpose of this node is debugging. If more than one Console
Out is being used, or if several parameters are being sent to the console us-
ing Console Out, then it is recommended that each Console Out receives a
different name, so that the data in the debugging console is better organized.
Although this node has does not affect anything in the game, it is very useful.

Inlets: Number (float), Vector (vector3), Rotation (quaternion), Color (color),
Bang (bang)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Example:

VL_Examples: Ramp

91

B.17 Output > Generic > Event Out

Description: Event Out invokes an event. Because Event Out has no outlets,
the event must be defined using the list in the node’s inspector. This is done
by clicking the “+” in Event Out’s list, which reveals an empty slot for a
GameObject to receive the event.

Inlet: Bang (bang)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

List - Summary of the node’s output connection.

Examples:

VideolabTest-master [2]: Peeler, Sphere, Text2, Worm

92

B.18 Output > Generic > Float Out

Description: Float Out sends a float value to an appropriate float property
of a GameObject. Once a GameObject has been selected in Float Out’s in-
spector, a menu hierarchy is unveiled, allowing the user to select the specific
property of the GameObject that will be manipulated.

Inlet: Input (float)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Target - A target GameObject must be selected to
receive the float value.

Examples:

VideolabTest-master [2]: Splash, Stripe, Trail, Worm

VL_Examples: Ramp, Video

YouTube: Milo

93

B.19 Output > Generic > Int Out

Description: Int Out sends an int value to an appropriate int property of a
GameObject. Once a GameObject has been selected in Int Out’s inspector, a
menu hierarchy is unveiled, allowing the user to select the specific property of
the GameObject that will be manipulated.

Inlet: Input (float)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Target - A target GameObject must be selected to
receive the int value.

Example:

VL_Examples: Collider

94

B.20 Output > Generic > Rotation Out

Description: Rotation Out sends a rotation (quaternion) to an appropriate
property of a GameObject. Once a GameObject has been selected in Rotation
Out’s inspector, a menu hierarchy is unveiled, allowing the user to select the
specific property of the GameObject that will be manipulated.

Inlet: Input (quaternion)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Target - A target GameObject must be selected to
receive the rotation.

Example:

VL_Examples: Collider

95

B.21 Output > Generic > String Out

Description: String Out sends a string to an appropriate string property
of a GameObject. Once a GameObject has been selected in String Out’s
inspector, a menu hierarchy is unveiled, allowing the user to select the specific
property of the GameObject that will be manipulated. This is a mysterious
node since it receives a float input, and its inspector contains the field Format,
which is float-valued.

Inlet: Input (float)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Target - A target GameObject must be selected to
receive the string.

Format - Mysterious float-valued property of the
node.

Example:

VL_Examples: Button

96

B.22 Output > Generic > Vector Out

Description: Vector Out sends a vector to an appropriate vector property
of a GameObject. Once a GameObject has been selected in Vector Out’s
inspector, a menu hierarchy is unveiled, allowing the user to select the specific
property of the GameObject that will be manipulated.

Inlet: Input (vector3)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Target - A target GameObject must be selected to
receive the vector.

Example:

VL_Examples: Warp

97

B.23 Output > Renderer > Material Color Out

Description: Material Color Out allows the user to manipulate the color
of materials. Its sister node is Color Out. However, there is an important
distinction between these nodes. Color Out affects color properties that are not
based on materials, such as the camera’s background color. Once a GameObject
has been selected in Material Color Out’s inspector, a menu hierarchy is
unveiled, allowing the user to select the specific material color property of the
GameObject that will be manipulated.

Inlet: Color Input (color)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Target - A target GameObject must be selected
from which the appropriate material property is
chosen to receive the color.

Examples:

VideolabTest-master [2]: Adam, Splash, Stripe, Text2, Trail, Worm

VL_Examples: ColorCubes

YouTube: Milo

98

B.24 Output > Renderer > Material Float Out

Description: Material Float Out allows the user to manipulate the float-
valued properties of materials. Its sister node is Float Out. However, there is
an important distinction between these nodes. Float Out affects float proper-
ties that are not based on materials. Once a GameObject has been selected in
Material Float Out’s inspector, a menu hierarchy is unveiled, allowing the
user to select the specific material float property of the GameObject that will
be manipulated.

Inlet: Float Input (float)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Target - A target GameObject must be selected
from which the appropriate material property is
chosen to receive the float.

Examples:

VideolabTest-master [2]: Adam, Boing, Peeler, Poly, Primitive, Sphere, Splash, Stripe, Text1, Text2,
Tilt Brush, Worm

99

B.25 Output > Renderer > Material Vector Out

Description: Material Vector Out allows the user to manipulate vector-
valued properties of materials. Its sister node is Vector Out. However, there is
an important distinction between these nodes. Vector Out affects vector prop-
erties that are not based on materials. Once a GameObject has been selected
in Material Vector Out’s inspector, a menu hierarchy is unveiled, allowing
the user to select the specific material color property of the GameObject that
will be manipulated.

Inlet: Vector Input (vector3)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Target - A target GameObject must be selected
from which the appropriate material property is
chosen to receive the vector.

Example: Me1

100

B.26 Output > Rumble Out

Description: Rumble Out trigger’s a vibration on the device. The device
(e.g., a smartphone or tablet) must be able to produce vibrations.

Inlet: Vibrate (bang)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

101

B.27 Output > System Property Out

Description: System Property Out works with the RenderSettings class in
Unity, affecting visual elements in the scene, such as fog and ambient light.
Although the node’s inspector asks for a material, this is unnecessary for func-
tionality.

Inlet: Time Scale (float), Gravity (vector3), Ambient Color (color), Ambient
Intensity (float), Reflection Intensity (float), Fog Color (color), Fog Density
(float), Fog Start Distance (float), Fog End Distance (float), Set Skybox (bang)
Outlets: None

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Skybox Material - A target material component
may be selected for specific manipulation of a ma-
terial. Otherwise the scene as a whole is affected by
the node.

Examples:

VideolabTest-master [2]: Poly

102

Appendix C

Conversion

C.1 Conversion > Accumulator

Description: Accumulator keeps a running sum of the floats it receives. Note
that certain nodes continuously send their value while they are activated (or
deactivated!). The Accumulator would then accumulate perhaps more than is
desired. Hence, if discrete single values are desired to be accumulated, special
attention should be taken concerning the way Accumulator receives values. The
floats to be accumulated are sent to the Delta inlet. To reset the accumulation,
a bang is sent to the Reset inlet. The accumulated values are sent out of the
Value outlet.

Inlets: Reset (bang), Delta (float)
Outlet: Value (float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

List - Summary of the node’s output connection.

Examples:

VideolabTest-master [2]: Stripe

YouTube: Andy

103

C.2 Conversion > Axis Rotation

Description: Axis Rotation converts a float into a rotation along a user-
defined axis. Like Euler Rotation, the x-axis is roll, y is yaw, and z is pitch.
The Angle inlet is scaled by the Angle Multiplier (defined in the inspector)

Inlet: Angle (float)
Outlet: Rotation (quaternion)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Rotation Axis - User-defined vector of rotation.
The vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) corre-
spond, respectively, to the x (roll), y (yaw), and
z (pitch) axes.

Angle Multiplier - Scales the incoming float into
degrees. (Usually scaling floats in Klak is achieved
with Float Filter.)

List - Summary of the node’s output connection.

Examples:

VLExamples: Airplane

VideolabTest-master [2]: Adam

MIDIKlak [2]: Knob Event (Value)

YouTube: Ninety Six

104

C.3 Conversion > Color Ramp

Description: Color Ramp smoothly transitions between a set of colors or a
gradient, parametrized by floats in the range of 0 to 1.

Inlet: Parameter (float)
Outlet: Color (color)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Color Mode - A dropdown menu has the option
of Gradient or Color Array.

Gradient - A gradient with the options of Blend
and Fixed can be created using the Gradient Edi-
tor. The lower tags control the colors, and can be
moved around to control the gradient. Additional
tags can be inserted by clicking in the region of
the tabs. The upper tags control the alphas of the
gradient, and are manipulated like the lower tags.

Color Array - A sequence of colors that is
equidistantly distributed along the interval from
0 to 1. For example, if 5 colors are created, they
will be mapped, in order, to 0, 0.25, 0.5, 0.75, and
1. The areas in between these points contain “in
between" colors.

List - Summary of the node’s output connection.

Examples:

VideolabTest-master [2]: Poly

VL_Examples: Button

YouTube: Milo

105

C.4 Conversion > Component Vector

Description: Component Vector creates a vector3 from three float inputs.

Inlets: X (float), Y (float), Z (float)
Outlet: Vector (vector3)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

List - Summary of the node’s output connection.

Examples:

VLExamples: Mouse-Position Rotate

VideolabTest-master [2]: Adam

YouTube: Milo

106

C.5 Conversion > Euler Rotation

Description: Euler rotations are defined by three angles, which control the
roll, yaw, and pitch of the rotating object. In Unity, an object’s rotation in
the inspector is manipulated via Euler Rotations. The Euler Rotation node
allows a vector3 to manipulate an object’s rotation. Behind the scenes, the
node converts vector3’s into quaternions, where x is roll, y is yaw, and z is
pitch.

Inlet: Euler Angles (vector3)
Outlet: Rotation (quaternion)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

List - Summary of the node’s output connection.

Example:

VLExamples: Mouse-Position Rotate

VideolabTest-master [2]: Adam

107

C.6 Conversion > From To Vector

Description: From To Vector parametrizes an infinite line between two user-
defined vectors. When the float received via the inlet is 0, the node sends the
first user-defined vector through its outlet, and when it is 1, the second vector
is sent. The line works for values outside of the range from 0 to 1.

Inlet: Parameter (float)
Outlet: Vector (vector3)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

From (parameter = 0) - The node will output
this user-defined vector when the input float is 0.

To (parameter =1) - The node will output this
user-defined vector when the input float is 1.

List - Summary of the node’s output connection.

Examples:

VLExamples: Line Cube

VideolabTest-master [2]: Boing

108

C.7 Conversion > HSB Color

Description: HSB Color starts with user-defined (or default) values for hue,
saturation, brightness, and alpha. The node has four inlets: hue, saturation,
brightness, and alpha, which can be manipulated during runtime. Each color
component is scaled to use floats between 0 and 1.

Inlets: Hue (float), Saturation (float), Brightness (float), Alpha (float)
Outlet: Color (color)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Initial Hue - A slider allows the user to choose a
float from 0 to 1 to serve as the initial hue.

Initial Saturation - A slider allows the user to
choose a float from 0 to 1 to serve as the initial
saturation.

Initial Brightness - A float input box allows the
user to input a float to serve as the initial satura-
tion.

Initial Alpha - A float input box allows the user
to input a float to serve as the initial alpha.

List - Summary of the node’s output connection.

Examples:

VideolabTest-master [2]: Adam, Primitive, Splash, Stripe, Text2, Trail, Worm

VL_Examples: ColorCubes

109

C.8 Conversion > Vector

Description: Vector multiplies a user-defined base vector by an input float.

Inlet: Scale (float)
Outlet: Vector (vector3)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Base Vector - Define the base vector that will get
multiplied by the incoming float.

List - Summary of the node’s output connection.

Examples:

VL_Examples: Warp

MIDIKlak [2]: Knob Event (Trigger), Knob Event (Value), Note Event (Trigger), Note Event (Value)

110

C.9 Conversion > Vector Components

Description: Vector Components decomposes a vector into its x, y, and z
coordinates, and calculates the length of the vector.

Inlet: Vector (vector3)
Outlets: X (float), Y (float), Z (float), Length (float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Lists - Summary of the node’s output connections.

Example:

VL_Examples: Warp

111

Appendix D

Animation

D.1 Animation > Float Animation

Description: Float Animation, despite its name, does not involve actual
animations. The node outputs float values from a user-defined curve along
time, and as such, is an animation of float values. Once Float Animation has
reached its endpoint, it continuously ends out its last value. To prevent this,
the node must be either paused (by sending a bang to its Toggle Pause inlet) or
stopped (by sending a bang to its Stop inlet). If the animation is paused, it can
be continued from where it left off by sending another bang to Toggle Pause.
If the animation is stopped, it can only be restarted by sending a bang to Play.
The Time Scale inlet receives floats that alter the speed of the animation.

Inlets: Time Scale (float), Play (bang), Stop (bang), Toggle Pause (bang)
Outlet: Float (float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Curve - The default curve is a line with slope one,
increasing from 0 to 1 uniformly across time. The
user can change the curve by moving the already
existing keys (the moveable points that shape the
curve) and by creating additional keys.

Speed - The default time for float animation is 1
second. This can be adjusted either in the anima-
tion inspector, by dragging the end point farther
down the x-axis, or by setting the speed. The speed
is adjustable in runtime through the input Time
Scale.

Play on Start - Option to play immediately when
the scene is loaded.

List - Summary of the node’s output connection.

Examples:

112

VideolabTest-master [2]: Adam, Boing, Peeler, Poly, Primitive, Sphere, Splash, Stripe, Text1, Text2,
Tilt Brush, Trail, Worm

MIDIKlak [2]: KnobEvent (Trigger), NoteEvent (Trigger)

YouTube: Milo

113

Appendix E

Filter

E.1 Filter > Bang Filter

Description: Bang Filter can be thought of as a faucet. The faucet is open
when the node has received a bang in its Open inlet, and it is closed when the
node has received a bang in its Closed inlet. Bangs sent to the Bang inlet of
Bang Filter are only pushed through the node and sent out of its Bang outlet
if the node is open.

Inlets: Bang (bang), Open (bang), Close (bang)
Outlet: Bang (bang)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Opened - Checking this option allows bangs to flow
through the Bang Filter when the scene is loaded.
During runtime, the open and close options are ma-
nipulated via the inlets Open and Close.

List - Summary of the node’s output connection.

Examples:

VideolabTest-master [2]: Adam, Splash, Stripe, Text2, Trail, Worm

114

E.2 Filter > Float Filter

Description: Float Filter applies a linear function to an incoming float
with the option of using a response curve. The response curve first maps the
float received through the Input inlet according to the curve. The curve’s
output is then manipulated by the Amplitude and Bias. If the option Use
Response Curve is not selected, then the float received through the Input inlet
is manipulated directly by the Amplitude and Bias.

Inlet: Input (float)
Outlet: Output (float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Use Response Curve - If this option is selected,
the float is first mapped by the user-defined func-
tion, and the result is transformed by the Ampli-
tude and Bias.

Amplitude - This user-defined value scales the in-
coming float.

Bias - This user-defined value is added to the scaled
float (the product of the float and the Amplitude).

Interpolator - Interpolators are methods of tran-
sitioning between values. This can be done directly
by jumping from one value to another, or smoothly
by following a curve. A dropdown menu con-
tains the options Direct, Exponential, and Damped
Spring. The latter two have an option for speed.

List - Summary of the node’s output connection.

Examples:

VideolabTest-master [2]: Adam, Boing, Peeler, Poly, Primitive, Stripe, Text1, Text2, Tilt Brush, Trail,
Worm

VL_Examples: Bounce, Button, Dancer, Ramp, Video

YouTube: Milo

115

Appendix F

Mixing

F.1 Mixing > Color Mix

Description: Color Mix takes two RGBA color inputs, Color A and Color B
(both 4-dimensional vectors), and mixes them using an incoming float value x.
The mix is computed as x(Color A) + (1− x)(Color A).

Inlets: Color A (color), Color B (color), Mix (float)
Outlet: Output (color)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

List - Summary of the node’s output connection.

Example:

VL_Examples: ColorCubes

116

F.2 Mixing > Float Mix

Description: Float Mix performs a user-defined mathematical operation on
the input and modulation floats. These operations are addition, subtraction,
multiplication, division, minimum, and maximum. The node only sends out
the final computation when it receives updated values through either one of
its inlets (or both). If a continuous stream is desired, at least one of its inlets
should be receiving a continuous stream of floats.

Inlets: Input (float), Modulation (float)
Outlet: Output (float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Modulation Type - Dropdown menu with options
Off, Add, Subtract, Multiply, Divide, Min, Max.
Denote the input and modulation floats as x and t,
respectively. Then,

Off outputs the input float x.

Add: x+ t

Subtract: x− t

Multiply: xt

Divide: x/t

Minimum: min(x, t)

Maximum: max(x, t)

List - Summary of the node’s output connection.

Examples:

VL_Examples: Bounce, Warp

117

F.3 Mixing > Float Vector Mix

Description: Float Vector Mix scales a vector by a float. The node only
sends out the final computation when it receives updated values through either
one of its inlets (or both). If a continuous stream is desired, at least one of its
inlets should be receiving a continuous stream of data.

Inlets: Float Input (float), Vector Input (vector3)
Outlet: Output (vector3)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Example:

VL_Examples: Warp

118

F.4 Mixing > Rotation Mix

Description: Rotation Mix computes the product of two quaternions.
Quaternions themselves represent rotations, and their product represents the
composition of the rotations. In other words, first the object is rotated by the
quaternion Input, and then it is rotated by the quaternion Modulation. Note
that quaternion multiplication is not commutable, so the product of Input and
Modulation is not the same as the product of Modulation and Input.

Inlets: Input (quaternion), Modulation (quaternion)
Outlet: Output (quaternion)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Example:

VL_Examples: Collider

119

F.5 Mixing > Vector Mix

Description: Vector Mix applies a user-defined vector operation to the input
and modulations vector. The node is activated whenever there is a change in
either the input or the modulation vectors.

Inlets: Input (vector3), Modulation (vector3)
Outlet: Output (vector3)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Modulation Type - Dropdown menu with op-
tions Off, Add, Subtract, Multiply, Cross, Min,
Max. Denote the input and modulation vectors
as v = (v1, v2, v3) and t = (t1, t2, t3), respectively.
Then,

Off outputs the input vector v = (v1, v2, v3).

Add: (v1 + t1, v2 + t2, v3 + t3)

Subtract: (v1 − t1, v2 − t2, v3 − t3)

Multiply: (v1 · t1, v2 · t2, v3 · t3)
Cross1 : v × t

Minimum: (min(v1, t1),min(v2, t2),min(v3, t3))

Maximum: (max(v1, t1),max(v2, t2),max(v3, t3))

List - Summary of the node’s output connection.

Example:

VL_Examples: Warp

1The cross product produces a vector perpendicular to both v and t and thus normal to the plane containing v and t.

120

Appendix G

Switching

G.1 Switching > Delay

Description: Delay simply delays a bang by specified amount of time in
seconds or frames.

Inlet: Trigger (bang)
Outlet: Output (bang)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Time Unit - Dropdown menu with options Second
and Frame.

Interval - The amount of seconds or frames the
bang is delayed.

List - Summary of the node’s output connection.

Example:

VL_Examples: Collider

121

G.2 Switching > Repeat

Description: Repeat transforms a single bang into several bangs sent in
equally spaced intervals of time.

Inlet: Trigger (bang)
Outlet: Output (bang)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Repeat Count - Specify the amount of times to
repeat the bang.

Interval - Specify the amount of seconds between
repetitions of the bang.

List - Summary of the node’s output connection.

Example:

VL_Examples: Collider

122

G.3 Switching > Threshold

Description: Threshold allows the user to define a threshold value that,
once met (i.e., the incoming float x is such that x ≥ threshold), a bang is sent
through the On outlet. In addition, the user may define a time delay in seconds
such that after the bang through the On outlet, a bang is sent through the Off
outlet. If the incoming float value x does not satisfy the threshold, no bangs
are sent either through the On or the Off outlets.

Inlet: Input (float)
Outlets: On (bang), Off (bang)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Threshold - Select the value to serve as the thresh-
old. All incoming float values greater than or equal
to the threshold will activate the Threshold node
and send a bang through the On outlet.

Delay to Off - Select the amount of seconds to
wait to send a bang through the Off outlet after a
bang has been sent through the On outlet.

List - Summary of the node’s output connection.

Example:

VL_Examples: Ramp

123

G.4 Switching > Toggle

Description: Toggle cycles through sending a bang from its On outlet to
sending one from its Off outlet, in alternating fashion, each time a bang is
received through its Trigger inlet. Every odd-numbered bang received (e.g.,
the first, third, fifth, and so on) causes the node to send a bang from its On
outlet; every even-numbered bang received causes the node to send a bang from
its Off outlet. In addition, Toggle sends a user-defined On Value and an Off
Value from its Value outlet, depending on the order of the bang. Note that the
values sent through the Value outlet are done so in continuous fashion.

Inlet: Trigger (bang)
Outlets: On (bang), Off (bang), Value (float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

Off Value - The float that will be sent through the
Value outlet during the off-cycle (until the node is
toggled to send an On bang).

On Value - The float that will be sent through the
Value outlet during the on-cycle (until the node is
toggled to send an Off bang).

Interpolator - Interpolators are methods of tran-
sitioning between values. This can be done directly
by jumping from one value to another, or smoothly
by following a curve. A dropdown menu con-
tains the options Direct, Exponential, and Damped
Spring. The latter two have an option for speed.

Off Event at Startup - If checked, the node will
send the Off bang when the scene runs.

List - Summary of the node’s output connection.

Examples:

VideolabTest-master [2]: Splash, Text2

124

G.5 Switching > Toggle Four

Description: Toggle Four is a customizable version of the Toggle node.
Whereas Toggle has two states (on and off), Toggle Four has, by default,
four states (state 1, state 2, state 3, and state 4). The number of states may
be defined to be 2, 3, or 4. Toggle Four receives a bang as an input, which
cycles through the states. In each state, the node outputs a bang from the
corresponding state’s outlet, and a value from the node’s Value outlet. This
value is sent continuously, even as it changes.

Inlet: Trigger (bang)
Outlet: State 1 (bang), State 2 (bang), State 3 (bang), State 4 (bang), Value
(float)

Inspector:

Name - Specifies the name of the node, which can
be used to organize the patch. This is an optional
feature.

State Count - Slider to choose int value from 2
to 4. This defines the number of states of Toggle
Four.

Value i - for i=1 to 4, the user can define Float
values to be sent continuously through the Value
outlet, depending on the state of the node.

Interpolator - Interpolators are methods of tran-
sitioning between values. This can be done directly
by jumping from one value to another, or smoothly
by following a curve. A dropdown menu con-
tains the options Direct, Exponential, and Damped
Spring. The latter two have an option for speed.

State 1 on Startup - The option to send the State
1 bang and value when the game runs.

List - Summary of the node’s output connection.

Examples:

VL_Examples: Button, Collider

125

Appendix H

Kino Image Effects

Videolab includes several post-processing image effects that are easily manipulable with Klak. This section
provides a short description for each of these effects. The image below is of the scene before any post-
processing effect is applied. In the description of each effect, an image showing the altered scene is provided.

126

H.1 Analog Glitch

Analog Glitch simulates image glitches produced by an analog television. There are four float-valued variables:
Scan Line Jitter, Vertical Jump, Horizontal Shake, and Color Drift. These variables can be manipulated by
the Float Out node.

H.2 Binary

Binary produces an effect that mixes pixelation and opacity to produce a halftone-type effect. There is a
dropdown menu allowing the user to select the Dither Type (different techniques for producing the pixelation),
an int variable for the Dither Scale (how strong the pixelation is), two color variables, and a float-valued
variable for opacity. Dither Scale can be manipulated using Int Out, the colors with Color Out, and the
opacity with Float Out.

127

H.3 Bloom

Associated Examples: Dancer, Video

Bloom is an effect that intensifies the brightness of the image. This is achieved with a number of variables:
the threshold (gamma), soft knee (ranges from 0 to 1), intensity, radius (ranges from 1 to 7), and the two
boolean options high quality and anti-flicker. The first four variables are float-valued and can be manipulated
with Float Out. The last two are buttons that can be turned on and off in a variety of ways, including Bool

Out and Active Status Out.

H.4 Contour

Contour produces a highlighted contour around the scene’s GameObjects. There are two color variables
and six float-valued variables. They can be manipulated through the Color Out and Float Out nodes,
respectively.

128

H.5 Digital Glitch

Associated Example: Splash

Digital Glitch is the digital version of analog glitch, producing broken pixelated horizontal lines on the screen.
There is only one float-valued variable (ranging from 0 to 1) which can be manipulated with the Float Out

node.

H.6 Fringe

Associated Example: Collider

The Fringe effect does chromatic aberrations along the corners of the image. There are three float-valued
variables that enable the effect, each of which can be manipulated with a Float Out node.

129

H.7 Isoline

The Isoline effect casts contour lines on the game’s objects. There are two colors (the background color and
the line color) (Color Out), five float-valued variables (Float Out), and two vector-valued variables (Vector

Out).

H.8 Isoline Scroller

The Isoline Scroller effect depends on the Isoline effect and uses a script to cause the isolines to move along
the image. There is a vector-valued variable for direction (can be manipulated with Vector Out, and a
float-valued variable for speed (Float Out).

130

H.9 Mirror

Mirror produces a kaleidoscope effect. There is an int-valued variable which denotes the number of repetitions
in the effect (accessed through Int Out, two float-valued variables (offset and roll, accessed through Float

Out). Finally, there is a button for the option of symmetry (accessed through Active Status Out or Bool

Out).

H.10 Motion

The Motion effect is akin to taking high-action and high-speed photos. The shutter speed and exposure are
manipulated, and several frames are blended to create the motion effect. There are two int-valued variables
(shutter angle and sample count, both accessible through Int Out). Lastly, there is a float-valued variable
denoting the strength of the multiple frame blending. This variable is accessible through Float Out.

131

H.11 Ramp

Associated Example: Ramp

The Ramp effect blends two colors according the selected blend mode (available through a dropdown menu).
The colors can be manipulated with Color Out nodes. The int-valued angle can be manipulated with a Int

Out node, and the float-valued opacity variable (between 0 and 1) can be manipulated with a Float Out

node.

H.12 Vignette

Vignette produces a vignette around the image and has a single float-valued variable called falloff, which is
the intensity of the vignette (can be manipulated with a Float Out node).

132

H.13 Vision

The Vision effect inverts the image’s colors depending on the source (accessible via the dropdown menu).
There are two float-valued variables: repeat and blend ratio, which are accessible through the Float Out

node. Lastly, there is a button option to use depth normals, which is accessible through the Active Status

Out or Bool Out nodes.

133

Bibliography

[1] Andy Tanguay. (2018, November 03). OP-Z and Unity - Animation Triggering for
Absolute Beginners - I mean like BEGINNER. Retrieved November 20, 2020, from
https://www.youtube.com/watch?v=MV05M0Fkkws

[2] Keijiro - GitHub. Retrieved November 20, 2020, from https://github.com/keijiro/

[3] Max Basic Tutorial 2: Bang!. Retrieved November 20, 2020, from
https://docs.cycling74.com/max8/tutorials/basicchapter02

[4] birthCenter Productions. (2019, January 15). OP-Z Videolab tutorial 1: Setup and Triggering Animation.
Retrieved November 20, 2020, from https://www.youtube.com/watch?v=8quDzNrlviI

[5] Mixamo. Retrieved November 20, 2020, from https://www.mixamo.com/

[6] Ninety Six. (2018, October 27). OP-Z Videolab install and first steps. Retrieved November 20, 2020, from
https://www.youtube.com/watch?v=-ucthiCRQRI

[7] Unity Technologies. Unity User Manual (2018.2). Retrieved November 20, 2020, from
https://docs.unity3d.com/2018.2/Documentation/Manual/index.html

[8] Unity Technologies. GameObjects. Retrieved November 20, 2020, from
https://docs.unity3d.com/560/Documentation/Manual/GameObjects.html

[9] Unity Technologies. The Hierarchy window. Retrieved November 20, 2020, from
https://docs.unity3d.com/Manual/Hierarchy.html

[10] Unity Technologies. Meshes, Materials, Shaders and Textures. Retrieved November 20, 2020, from
https://docs.unity3d.com/Manual/Shaders.html

[11] Unity Technologies. Particle System. Retrieved November 20, 2020, from
https://docs.unity3d.com/Manual/class-ParticleSystem.html

[12] Unity Technologies. Playable Director component: Timeline: 1.2.17. Retrieved November 20, 2020, from
https://docs.unity3d.com/Packages/com.unity.timeline@1.2/manual/play_director.html

[13] Unity Technologies. Quaternion. Retrieved November 20, 2020, from
https://docs.unity3d.com/ScriptReference/Quaternion.html

[14] Unity Technologies. Scenes. Retrieved November 20, 2020, from
https://docs.unity3d.com/Manual/CreatingScenes.html

[15] Unity Technologies. String. Retrieved November 20, 2020, from
https://docs.unity3d.com/ScriptReference/String.html

134

[16] Unity Technologies. Using Components. Retrieved November 20, 2020, from
https://docs.unity3d.com/Manual/UsingComponents.html

[17] Unity Technologies. Vector3. Retrieved November 20, 2020, from
https://docs.unity3d.com/ScriptReference/Vector3.html

[18] Unity Technologies. Video Player component. Retrieved November 20, 2020, from
https://docs.unity3d.com/Manual/class-VideoPlayer.html

[19] Unity Technologies. Video file compatibility. Retrieved November 20, 2020, from
https://docs.unity3d.com/Manual/VideoSources-FileCompatibility.html

[20] Teenage Engineering – Videolab. Retrieved November 20, 2020, from
https://teenage.engineering/products/op-z/videolab

135

	tr
	videolab_documentation
	Acknowledgements
	Introduction
	Terminology
	Getting Started
	Some Words of Warning and Advice
	The Unity Workstation
	Overview of Klak Nodes

	Examples
	Adam
	Boing
	Peeler
	Poly
	Splash
	Stripe
	Trail
	Bounce
	Button
	Collider
	ColorCubes
	Dancer
	Ramp
	Video
	Wall
	Warp

	Short Tutorials
	Particle Systems
	Playable Director and Timelines
	Video Player
	Animators
	Pure Data and Max MSP

	Input
	Input > MIDI > Knob Input
	Input > MIDI > Note Input
	Input > MIDI > Sequencer Input
	Input > MIDI > Videolab Input
	Input > Axis Input
	Input > Generic > Bool Input
	Input > Generic > Float Input
	Input > Generic > Float Value
	Input > Generic > Int Input
	Input > Generic > Vector Input
	Input > Generic > Vector Value
	Input > Button Input
	Input > Component > Collider Input
	Input > Component > Transform Input
	Input > UI Event > Drag Event Input
	Input > UI Event > Tap Event Input
	Input > Gyro Input
	Input > Key Input
	Input > Mouse Button Input
	Input > Mouse Position Input
	Input > Noise
	Input > Random Value
	Input > Starter

	Output
	Output > MIDI > Knob Out
	Output > MIDI > Note Out
	Output > MIDI > Sequencer Out
	Output > Videolab > Webcam Manager Out
	Output > Selector
	Output > Component > Active Status Out
	Output > Component > Animator Out
	Output > Component > Particle System Out
	Output > Component > Playable Director Out
	Output > Component > Rect Transform Out
	Output > Component > Rigidbody Out
	Output > Component > Transform Out
	Output > Component > Video Player Out
	Output > Generic > Bool Out
	Output > Generic > Color Out
	Output > Generic > Console Out
	Output > Generic > Event Out
	Output > Generic > Float Out
	Output > Generic > Int Out
	Output > Generic > Rotation Out
	Output > Generic > String Out
	Output > Generic > Vector Out
	Output > Renderer > Material Color Out
	Output > Renderer > Material Float Out
	Output > Renderer > Material Vector Out
	Output > Rumble Out
	Output > System Property Out

	Conversion
	Conversion > Accumulator
	Conversion > Axis Rotation
	Conversion > Color Ramp
	Conversion > Component Vector
	Conversion > Euler Rotation
	Conversion > From To Vector
	Conversion > HSB Color
	Conversion > Vector
	Conversion > Vector Components

	Animation
	Animation > Float Animation

	Filter
	Filter > Bang Filter
	Filter > Float Filter

	Mixing
	Mixing > Color Mix
	Mixing > Float Mix
	Mixing > Float Vector Mix
	Mixing > Rotation Mix
	Mixing > Vector Mix

	Switching
	Switching > Delay
	Switching > Repeat
	Switching > Threshold
	Switching > Toggle
	Switching > Toggle Four

	Kino Image Effects
	Analog Glitch
	Binary
	Bloom
	Contour
	Digital Glitch
	Fringe
	Isoline
	Isoline Scroller
	Mirror
	Motion
	Ramp
	Vignette
	Vision

	References

