Motion Reparametrization

Fernando Wagner da Silva Luiz Velho Jonas Gomes

IMPA - Instituto de Matemática Pura e Aplicada LCG - COPPE/SISTEMAS - UFRJ

Rio de Janeiro - Brazil

Motivation

- Reparametrization of motion captured data
 - generation of slow-down and acceleration effects.
 - synchronization of mocap animation with audio.
- Other applications

Continuous Objects in CG

- usually described as parametric functions
- example: splines

Reparametrization

- change of parametric function
- warping (compression / expansion)

Discretization

- samples of a continuous function
- example: motion capture data

Resampling

• Need uniform sampling rate

Antialiasing in Resampling

• Reconstruction and resampling

Time-dependent Applications

- Reparametrization changes "timing"
- Sound processing
 - "pitch" adjustment.
- Computer animation
 - velocity/acceleration adjustment.
- Video processing

slow-motion and accelerated-time effects.

Specification

Derivative of reparametrization function (g'(t))
– more suitable for time-dependent applications.

Discrete Reparametrization

- Possible solution
 - reconstruct the motion curve from samples
 - reparametrize the continuous curve and sample it.very time and memory consuming.
- Our solution
 - reparametrization in the discrete domain.
 - local resampling according to a velocity curve.
 - \blacksquare more efficient and natural.

Overview of Computation

- Input
 - original sampled data.
 - user-defined velocity.
- Processing
 - discrete reparametrization.
- Output
 - new set of samples.

Identifying Regions of Change

- Velocity function
 - defined over the temporal description of the original signal.
 - comprises regions *ri* of monotonic increase and/or decrease.

Computing Warp Factors

- Expansion/Compression regions
 - detected by using ratio $\Delta r_i = \Delta c_i / \Delta n_i$.
 - Δr_i is used to calculate new number of samples.
- expansion ($\Delta r_i > 1$)

Algorithm Description

- Identification of regions *r*_i
- Computation of warp factors Δr_i
- Calculation of new number of samples
 - for each region r_i : NS_{*ri*} = Δr_i . NS_{orig}

- total number of samples: $\sum_{i=1}^{n} NS_{r_i}$

• Antialiasing where necessary

User Interface

• Velocity function

Example

• original data

• reparametrized data

Video

- Original motion captured data
- Application of the algorithm using in-house animation system.
- New motion data.

Conclusions / Future Work

- Conclusion
 - velocity function: natural interface for time-dependent applications.
 - discrete reparametrization: fast and efficient (low memory usage).
- Future work
 - applications in sound and image processing.
 - applications in modeling.

Additional Info

http://www.visgraf.impa.br/mocap