Computational Manifolds and Applications-2011, IMPA

 Homework 2

 Homework 2}

Due September 29, 2011

Problem 1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function given by

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{4}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Compute the directional derivative $\mathrm{D}_{u} f(0,0)$ of f at $(0,0)$ for every vector $u=$ $\left(u_{1}, u_{2}\right) \neq 0$.
(b) Prove that the derivative $\mathrm{D} f(0,0)$ does not exist. What is the behavior of the function f on the parabola $y=x^{2}$ near the origin $(0,0)$?

Problem 2. (a) Let $f: \mathrm{M}_{n}(\mathbb{R}) \rightarrow \mathrm{M}_{n}(\mathbb{R})$ be the function defined on $n \times n$ matrices by

$$
f(A)=A^{2}
$$

Prove that

$$
\mathrm{D} f_{A}(H)=A H+H A
$$

for all $A, H \in \mathrm{M}_{n}(\mathbb{R})$.
(b) Let $f: \mathrm{M}_{n}(\mathbb{R}) \rightarrow \mathrm{M}_{n}(\mathbb{R})$ be the function defined on $n \times n$ matrices by

$$
f(A)=A^{3}
$$

Prove that

$$
\mathrm{D} f_{A}(H)=A^{2} H+A H A+H A^{2}
$$

for all $A, H \in \mathrm{M}_{n}(\mathbb{R})$.
Problem 3. Let $f: \operatorname{GL}(n, \mathbb{R}) \rightarrow \mathrm{M}_{n}(\mathbb{R})$ be the function defined on invertible $n \times n$ matrices by

$$
f(A)=A^{-1}
$$

Prove that

$$
\mathrm{D} f_{A}(H)=-A^{-1} H A^{-1}
$$

for all $A \in \mathrm{GL}(n, \mathbb{R})$ and for all $H \in \mathrm{M}_{n}(\mathbb{R})$.

Problem 4. Recall that a matrix $B \in \mathrm{M}_{n}(\mathbb{R})$ is skew-symmetric if

$$
B^{\top}=-B
$$

Check that the set $\mathfrak{s o}(n)$ of skew-symmetric matrices is a vector space of dimension $n(n-1) / 2$, and thus is isomorphic to $\mathbb{R}^{n(n-1) / 2}$. Let $C: \mathfrak{s o}(n) \rightarrow \mathrm{M}_{n}(\mathbb{R})$ be the function given by

$$
C(B)=(I-B)(I+B)^{-1} .
$$

Prove that the eigenvalues of a skew-symmetric matrix are either 0 or pure imaginary (that is, of the form $i \mu$ for $\mu \in \mathbb{R}$.). Prove that if B is skew-symmetric, then $I-B$ and $I+B$ are invertible, and so C is well-defined. Prove that

$$
(I+B)(I-B)=(I-B)(I+B),
$$

and that

$$
(I+B)(I-B)^{-1}=(I-B)^{-1}(I+B)
$$

Prove that

$$
(C(B))^{\top} C(B)=I
$$

and that

$$
\operatorname{det} C(B)=+1,
$$

so that $C(B)$ is a rotation matrix. Furthermore, show that $C(B)$ does not admit -1 as an eigenvalue.
(b) Let $\mathbf{S O}(n)$ be the group of $n \times n$ rotation matrices. Prove that the map

$$
C: \mathfrak{s o}(n) \rightarrow \mathbf{S O}(n)
$$

is bijective onto the subset of rotation matrices that do not admit -1 as an eigenvalue. Show that the inverse of this map is given by

$$
B=(I+R)^{-1}(I-R)=(I-R)(I+R)^{-1}
$$

where $R \in \mathbf{S O}(n)$ does not admit -1 as an eigenvalue. Check that C is a homeomorphism between $\mathfrak{s o}(n)$ and $C(\mathfrak{s o}(n))$.
(c) If $f: \mathrm{M}_{n}(\mathbb{R}) \rightarrow \mathrm{M}_{n}(\mathbb{R})$ and $g: \mathrm{M}_{n}(\mathbb{R}) \rightarrow \mathrm{M}_{n}(\mathbb{R})$ are differentiable matrix functions, prove that

$$
\mathrm{D}(f g)_{A}(B)=f(A) \mathrm{D}(g)_{A}(B)+\mathrm{D}(f)_{A}(B) g(A),
$$

for all $A, B \in \mathrm{M}_{n}(\mathbb{R})$.
(d) Prove that

$$
d C(B)(A)=-\left[I+(I-B)(I+B)^{-1}\right] A(I+B)^{-1}
$$

Prove that $d C(B)$ is injective, for every skew-symmetric matrix B. Prove that C a parametrization of $\mathbf{S O}(n)$.

Problem 5. Consider the parametric surface given by

$$
\begin{aligned}
& x(u, v)=\frac{8 u v}{\left(u^{2}+v^{2}+1\right)^{2}}, \\
& y(u, v)=\frac{4 v\left(u^{2}+v^{2}-1\right)}{\left(u^{2}+v^{2}+1\right)^{2}} \\
& z(u, v)=\frac{4\left(u^{2}-v^{2}\right)}{\left(u^{2}+v^{2}+1\right)^{2}} .
\end{aligned}
$$

The trace of this surface is called a crosscap. In order to plot this surface, make the change of variables

$$
\begin{aligned}
& u=\rho \cos \theta \\
& v=\rho \sin \theta .
\end{aligned}
$$

Prove that we obtain the parametric definition

$$
\begin{aligned}
& x=\frac{4 \rho^{2}}{\left(\rho^{2}+1\right)^{2}} \sin 2 \theta \\
& y=\frac{4 \rho\left(\rho^{2}-1\right)}{\left(\rho^{2}+1\right)^{2}} \sin \theta \\
& z=\frac{4 \rho^{2}}{\left(\rho^{2}+1\right)^{2}} \cos 2 \theta
\end{aligned}
$$

Show that the entire trace of the surface is obtained for $\rho \in[0,1]$ and $\theta \in[-\pi, \pi]$. Hint. What happens if you change ρ to $1 / \rho$?

Plot the trace of the surface using the above parametrization. Show that there is a line of self-intersection along the portion of the z-axis corresponding to $0 \leq z \leq 1$. What can you say about the point corresponding to $\rho=1$ and $\theta=0$?

Plot the portion of the surface for $\rho \in[0,1]$ and $\theta \in[0, \pi]$.
(b) Express the trigonometric functions in terms of $u=\tan (\theta / 2)$, and letting $v=\rho$, show that we get

$$
\begin{aligned}
& x=\frac{16 u v^{2}\left(1-u^{2}\right)}{\left(u^{2}+1\right)^{2}\left(v^{2}+1\right)^{2}}, \\
& y=\frac{8 u v\left(u^{2}+1\right)\left(v^{2}-1\right)}{\left(u^{2}+1\right)^{2}\left(v^{2}+1\right)^{2}} \\
& z=\frac{4 v^{2}\left(u^{4}-6 u^{2}+1\right)}{\left(u^{2}+1\right)^{2}\left(v^{2}+1\right)^{2}} .
\end{aligned}
$$

