Introduction to Computational Manifolds and Applications

Part 1 - Foundations

Prof. Jean Gallier
jean@cis.upenn.edu

Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA, USA

CURVES

Parametric curves

Properties of curves can be classified into local properties and global properties.

Local properties are the properties that hold in a small neighborhood of a point on the curve.

For instance, curvature is a local property.

Local properties can be more conveniently studied by assuming that the curve is parametrized locally.

A proper study of global properties of curves really requires the introduction of the notion of a manifold.

CURVES

Parametric curves

Recall that the Euclidean space \mathbb{E}^{m} is obtained from the vector space \mathbb{R}^{m} by defining the standard inner product

$$
\left(x_{1}, \ldots, x_{m}\right) \cdot\left(y_{1}, \ldots, y_{m}\right)=x_{1} y_{1}+\cdots+x_{m} y_{m} .
$$

The corresponding Euclidean norm is

$$
\left\|\left(x_{1}, \ldots, x_{m}\right)\right\|=\sqrt{x_{1}^{2}+\cdots+x_{m}^{2}} .
$$

Let $\mathcal{E}=\mathbb{E}^{m}$, for some $m \geq 2$. Typically, $m=2$ or $m=3$.

CURVES

Parametric curves

From a kinematics point of view, a curve can be defined as a continuous map

$$
f:] a, b[\rightarrow \mathcal{E}
$$

from an open interval $I=] a, b[$ of \mathbb{R} to the Euclidean space \mathcal{E}.

We can think of the parameter $t \in] a, b[$ as time, and the function f gives the position $f(t)$ of a moving particle, at time t. The image $f(I) \subseteq \mathcal{E}$ of the interval I is the trajectory of the particle.

CURVES

Parametric curves

In fact, only asking that f be continuous turns out to be too liberal, as rather strange curves turn out to be definable, such as "square-filling curves", due to Peano, Hilbert, Sierpinski, and others.

A very pretty square-filling curve due to Hilbert is defined by a sequence $\left(h_{n}\right)$ of polygonal lines $h_{n}:[0,1] \rightarrow[0,1] \times[0,1]$ starting from the simple pattern h_{0} (a "square cap" \square) shown on the left below:

CURVES

Parametric curves

It can be shown that the sequence (h_{n}) converges (pointwise) to a continuous curve

$$
h:[0,1] \rightarrow[0,1] \times[0,1]
$$

whose trace is the entire square $[0,1] \times[0,1]$. Curve h is nowhere differentiable and has infinite length!

CURVES

Parametric curves

Actually, there are many fascinating curves that are only continuous, fractal curves being a major example, but for our purposes, we need the existence of the tangent at every point (except perhaps for finitely many points).

This leads us to require that

$$
f:] a, b[\rightarrow \mathcal{E}
$$

be at least continuously differentiable. We also say that f is a C^{1}-function.

However, asking that $f:] a, b\left[\rightarrow \mathcal{E}\right.$ be a C^{p}-function for $p \geq 1$, still allows unwanted curves.

CURVES

Parametric curves

For example, the plane curve given by

$$
f(t)= \begin{cases}\left(0, e^{1 / t}\right) & \text { if } t<0 \\ (0,0) & \text { if } t=0 \\ \left(e^{-1 / t}, 0\right) & \text { if } t>0\end{cases}
$$

is a C^{∞}-function, but $f^{\prime}(0)=0$, and thus the tangent at the origin is undefined.

What happens is that the curve has a sharp "corner" at the origin.

CURVES

Parametric curves

CURVES

Parametric curves

Similarly, the plane curve defined such that

$$
f(t)= \begin{cases}\left(-e^{1 / t}, e^{1 / t} \sin \left(e^{-1 / t}\right)\right) & \text { if } t<0 ; \\ (0,0) & \text { if } t=0 ; \\ \left(e^{-1 / t}, e^{-1 / t} \sin \left(e^{1 / t}\right)\right) & \text { if } t>0 ;\end{cases}
$$

is a C^{∞}-function, but $f^{\prime}(0)=0$. In this case, the curve oscillates more and more around the origin.

CURVES

Parametric curves

CURVES

Parametric curves

The problem with the above examples is that the origin is a singular point for which $f^{\prime}(0)=0$ (a stationary point).

Although it is possible to define the tangent when f is sufficiently differentiable and when for every $t \in] a, b\left[, f^{(p)}(t) \neq 0\right.$ for some $p \geq 1$ (where $f^{(p)}$ denotes the p-th derivative of f), a systematic study is rather cumbersome.

Thus, we will restrict our attention to curves having only regular points, that is, for which $f^{\prime}(t) \neq 0$ for every $\left.t \in\right] a, b[$.

However, we allow functions $f:] a, b[\rightarrow \mathcal{E}$ that are not necessarily injective, unless stated otherwise.

CURVES

Parametric curves

Definition 1.1. An open curve (or open arc) of class C^{p} is a map

$$
f:] a, b[\rightarrow \mathcal{E}
$$

of class C^{p}, with $p \geq 1$, where $] a, b[$ is an open interval (allowing $a=-\infty$ or $b=+\infty$). The set of points

$$
f(] a, b[)
$$

in \mathcal{E} is called the trace of the curve f. A point $f(t)$ is regular at $t \in] a, b\left[\right.$ iff $f^{\prime}(t)$ exists and $f^{\prime}(t) \neq 0$, and stationary otherwise. A regular open curve (or regular open arc) of class C^{p} is an open curve of class C^{p}, with $p \geq 1$, such that every point is regular, i.e., $f^{\prime}(t) \neq 0$ for every $t \in] a, b[$.

CURVES

Parametric curves

For example, a parabola is defined by the map

$$
f(t)=\left(2 t, t^{2}\right) .
$$

The trace of this curve corresponding to the interval $(-1,1)$ is shown below:

CURVES

Parametric curves

The curve defined by

$$
f(t)=\left(1-t^{2}, t\left(1-t^{2}\right)\right)
$$

is known as a nodal cubic.

CURVES

Parametric curves

The curve defined by

$$
f(t)=\left(t^{2}, t^{3}\right)
$$

is known as a cuspidal cubic.

CURVES

Parametric curves

Definition 1.2. A curve (or arc) of class C^{p} is a map

$$
f:[a, b] \rightarrow \mathcal{E},
$$

with $p \geq 1$, such that the restriction of f to $] a, b\left[\right.$ is of class C^{p}, and where

$$
f^{(i)}(a)=\lim _{t \rightarrow a, t>a} f^{(i)}(t) \quad \text { and } \quad f^{(i)}(b)=\lim _{t \rightarrow b, t<b} f^{(i)}(t)
$$

exist, where $0 \leq i \leq p$. A regular curve (or regular arc) of class C^{p} is a curve of class C^{p}, with $p \geq 1$, such that every point is regular, i.e., $f^{\prime}(t) \neq 0$ for every $t \in[a, b]$. The set of points

$$
f([a, b])
$$

in \mathcal{E} is called the trace of the curve f.
It should be noted that even if f is injective, the trace $f(I)$ of f may be self-intersecting.

CURVES

Parametric curves

Consider the curve $f: \mathbb{R} \rightarrow \mathbb{E}^{2}$ given by,

$$
f(t)=\left(\frac{t\left(1+t^{2}\right)}{1+t^{4}}, \frac{t\left(1-t^{2}\right)}{1+t^{4}}\right) .
$$

The trace of this curve is called the lemniscate of Bernoulli, and it has a self-intersection at the origin.

CURVES

Parametric curves

The map f is continuous, and in fact bijective, but its inverse f^{-1} is not continuous.

Self-intersection is due to the fact that

$$
\lim _{t \rightarrow-\infty} f(t)=\lim _{t \rightarrow+\infty} f(t)=f(0)
$$

CURVES

Parametric curves

If we consider a curve

$$
f:[a, b] \rightarrow \mathcal{E}
$$

and we assume that f is injective on the entire closed interval $[a, b]$, then the trace

$$
f([a, b])
$$

of f has no self-intersection. Such curves are usually called Jordan arcs or simple arcs.

Because $[a, b]$ is compact, f is in fact a homeomorphism between $[a, b]$ and $f([a, b])$.

Many fractal curves are only continuous Jordan arcs that are not differentiable.

CURVES

Parametric curves

It is possible that the trace of a curve be defined by many parameterizations, as illustrated by the unit circle, which is the trace of the parameterized curves $\left.f_{k}:\right] 0,2 \pi\left[\rightarrow \mathcal{E}\right.$ (or $f_{k}:[0,2 \pi] \rightarrow$ \mathcal{E}), where

$$
f_{k}(t)=(\cos k t, \sin k t),
$$

with $k \geq 1$.

A clean way to handle this phenomenon is to define a notion of geometric arc curve. For our purposes, it suffices to define a notion of change of parameter which does not change the "geometric shape" of the trace.

CURVES

Parametric curves

Recall that a diffeomorphism $g:] a, b[\rightarrow] c, d\left[\right.$ of class C^{p} from an open interval $] a, b[$ to another open interval $] c, d[$ is a bijection, such that both $g:] a, b[\rightarrow] c, d\left[\right.$ and its inverse $\left.g^{-1}:\right] c, d[\rightarrow$] $a, b\left[\right.$ are C^{p}-functions.

This implies that $g^{\prime}(t) \neq 0$ for every $\left.t \in\right] a, b[$.

Definition 1.3. Two regular curves $f:] a, b[\rightarrow \mathcal{E}$ and $h:] c, d\left[\rightarrow \mathcal{E}\right.$ of class C^{p}, with $p \geq 1$, are C^{p}-equivalent iff there is a diffeomorphism $\left.g \rightarrow\right] a, b[\rightarrow] c, d\left[\right.$ of class C^{p} such that f is equal to $h \circ g$.

It is immediately verified that Definition 1.3 yields an equivalence relation on open curves.

CURVES

Parametric curves

For instance, consider the regular curves $f:[-1,1] \rightarrow \mathcal{E}$ and $h:[2,6] \rightarrow \mathcal{E}$ given by

$$
f(t)=\left(2 t, t^{2}\right) \quad \text { and } \quad h(s)=\left(s-4, \frac{s^{2}-8 s+16}{4}\right) .
$$

Note that $f=h \circ g$, where $g:[-1,1] \rightarrow[2,6]$ is the diffeomorphism given by $g(r)=2 \cdot r+4$.

CURVES

Parametric curves

Definition 1.4. For any open curve $f:] a, b\left[\rightarrow \mathcal{E}\right.$ of class C^{p} (or curve $f:[a, b] \rightarrow \mathcal{E}$ of class C^{p}), with $p \geq 1$, given any point $M_{0}=f(t)$ on the curve, if f is locally injective at M_{0} and for any point $M_{1}=f(t+h)$ near M_{0}, if the line $T_{t, h}$ determined by the points M_{0} and M_{1} has a limit T_{t} when $h \neq 0$ approaches 0 , we say that T_{t} is the tangent line to f in $M_{0}=f(t)$ at t.

CURVES

Parametric curves

For simplicity, we will often say tangent, instead of tangent line.

The definition is simpler when f is a simple curve (there is no danger that $M_{1}=M_{0}$ when $h \neq 0$).

The following lemma shows why regular points are important.

Lemma 1.1. For any open curve $f:] a, b\left[\rightarrow \mathcal{E}\right.$ of class C^{p} (or curve $f:[a, b] \rightarrow \mathcal{E}$ of class C^{p}), with $p \geq 1$, given any point $M_{0}=f(t)$ on the curve, if M_{0} is a regular point at t, then the tangent line to f in M_{0} at t exists and is determined by the derivative $f^{\prime}(t)$ of f at t.

CURVES

Parametric curves

If $f^{\prime}(t)=0$, the above argument breaks down.

However, if f is a C^{p}-function and $f^{(p)}(t) \neq 0$ for some $p \geq 2$, where p is the smallest integer with that property, we can show that the line $T_{t, h}$ has the limit determined by M_{0} and the derivative $f^{(p)}(t)$. Thus, the tangent line may still exist at a stationary point.

CURVES

Parametric curves

For example, the curve f defined by the map $t \mapsto\left(t^{2}, t^{3}\right)$ is a C^{∞}-function, but $f^{\prime}(0)=0$. Nevertheless, the tangent at the origin is defined for $t=0$ (it is the x-axis).

