

Introduction to Computational Manifolds and Applications

Part 1 - Foundations

Prof. Jean Gallier

jean@cis.upenn.edu

Department of Computer and Information Science University of Pennsylvania Philadelphia, PA, USA

Parametric curves

Properties of curves can be classified into **local properties** and **global properties**.

Local properties are the properties that hold in a small neighborhood of a point on the curve.

For instance, *curvature* is a local property.

Local properties can be more conveniently studied by assuming that the curve is parametrized locally.

A proper study of global properties of curves really requires the introduction of the notion of a manifold.

Parametric curves

Recall that the Euclidean space \mathbb{E}^m is obtained from the vector space \mathbb{R}^m by defining the standard inner product

$$(x_1,\ldots,x_m)\cdot(y_1,\ldots,y_m)=x_1y_1+\cdots+x_my_m.$$

The corresponding Euclidean norm is

$$||(x_1,\ldots,x_m)|| = \sqrt{x_1^2 + \cdots + x_m^2}.$$

Let $\mathcal{E} = \mathbb{E}^m$, for some $m \ge 2$. Typically, m = 2 or m = 3.

Parametric curves

From a kinematics point of view, a curve can be defined as a continuous map

 $f:]a, b[
ightarrow {\mathcal E}$,

from an open interval I =]a, b[of \mathbb{R} to the Euclidean space \mathcal{E} .

We can think of the parameter $t \in]a, b[$ as time, and the function f gives the position f(t) of a moving particle, at time t. The image $f(I) \subseteq \mathcal{E}$ of the interval I is the trajectory of the particle.

4

Parametric curves

In fact, only asking that *f* be continuous turns out to be too liberal, as rather strange curves turn out to be definable, such as "square-filling curves", due to Peano, Hilbert, Sierpinski, and others.

A very pretty square-filling curve due to Hilbert is defined by a sequence (h_n) of polygonal lines $h_n : [0,1] \rightarrow [0,1] \times [0,1]$ starting from the simple pattern h_0 (a "square cap" \sqcap) shown on the left below:

Parametric curves

It can be shown that the sequence (h_n) converges (pointwise) to a continuous curve

 $h:[0,1] \rightarrow [0,1] \times [0,1]$

whose trace is the entire square $[0, 1] \times [0, 1]$. Curve *h* is nowhere differentiable and has infinite length!

Parametric curves

Actually, there are many fascinating curves that are only continuous, *fractal curves* being a major example, but for our purposes, we need the existence of the tangent at every point (except perhaps for finitely many points).

This leads us to require that

$$f:]a, b[\rightarrow \mathcal{E}]$$

be at least continuously differentiable. We also say that f is a C^1 -function.

However, asking that $f :]a, b[\to \mathcal{E}$ be a C^p -function for $p \ge 1$, still allows unwanted curves.

Parametric curves

For example, the plane curve given by

$$f(t) = \begin{cases} (0, e^{1/t}) & \text{if } t < 0; \\ (0, 0) & \text{if } t = 0; \\ (e^{-1/t}, 0) & \text{if } t > 0; \end{cases}$$

is a C^{∞} -function, but f'(0) = 0, and thus the tangent at the origin is undefined.

What happens is that the curve has a sharp "corner" at the origin.

Parametric curves

Parametric curves

Similarly, the plane curve defined such that

$$f(t) = \begin{cases} (-e^{1/t}, e^{1/t} \sin(e^{-1/t})) & \text{if } t < 0; \\ (0, 0) & \text{if } t = 0; \\ (e^{-1/t}, e^{-1/t} \sin(e^{1/t})) & \text{if } t > 0; \end{cases}$$

is a C^{∞} -function, but f'(0) = 0. In this case, the curve oscillates more and more around the origin.

Parametric curves

Parametric curves

The problem with the above examples is that the origin is a singular point for which f'(0) = 0 (a *stationary point*).

Although it is possible to define the tangent when f is sufficiently differentiable and when for every $t \in]a, b[$, $f^{(p)}(t) \neq 0$ for some $p \geq 1$ (where $f^{(p)}$ denotes the p-th derivative of f), a systematic study is rather cumbersome.

Thus, we will restrict our attention to curves having only regular points, that is, for which $f'(t) \neq 0$ for every $t \in]a, b[$.

However, we allow functions $f :]a, b[\rightarrow \mathcal{E}$ that are not necessarily injective, unless stated otherwise.

Parametric curves

Definition 1.1. An open curve (or open arc) of class C^p is a map

 $f:]a, b[\rightarrow \mathcal{E}$

of class C^p , with $p \ge 1$, where]a, b[is an open interval (allowing $a = -\infty$ or $b = +\infty$). The set of points

f(]a,b[)

in \mathcal{E} is called the *trace of the curve* f. A point f(t) is *regular at* $t \in]a, b[$ iff f'(t) exists and $f'(t) \neq 0$, and *stationary* otherwise. A *regular open curve (or regular open arc) of class* C^p is an open curve of class C^p , with $p \geq 1$, such that every point is regular, i.e., $f'(t) \neq 0$ for every $t \in]a, b[$.

Parametric curves

For example, a parabola is defined by the map

 $f(t) = (2t, t^2).$

The trace of this curve corresponding to the interval (-1, 1) is shown below:

Parametric curves

The curve defined by

$$f(t) = (1 - t^2, t(1 - t^2))$$

is known as a nodal cubic.

Parametric curves

The curve defined by

$$f(t) = \left(t^2, t^3\right)$$

is known as a cuspidal cubic.

Parametric curves

Definition 1.2. A *curve (or arc) of class C^p* is a map

 $f:[a,b] \to \mathcal{E}$,

with $p \ge 1$, such that the restriction of *f* to]a, b[is of class C^p , and where

$$f^{(i)}(a) = \lim_{t \to a, t > a} f^{(i)}(t)$$
 and $f^{(i)}(b) = \lim_{t \to b, t < b} f^{(i)}(t)$

exist, where $0 \le i \le p$. A *regular curve* (or *regular arc*) of class C^p is a curve of class C^p , with $p \ge 1$, such that every point is regular, i.e., $f'(t) \ne 0$ for every $t \in [a, b]$. The set of points

f([a,b])

in \mathcal{E} is called the *trace of the curve f*.

It should be noted that even if f is injective, the trace f(I) of f may be self-intersecting.

Parametric curves

Consider the curve $f : \mathbb{R} \to \mathbb{E}^2$ given by,

$$f(t) = \left(\frac{t(1+t^2)}{1+t^4}, \frac{t(1-t^2)}{1+t^4}\right) \,.$$

The trace of this curve is called the lemniscate of Bernoulli, and it has a self-intersection at the origin.

Parametric curves

The map *f* is continuous, and in fact bijective, but its inverse f^{-1} is **not** continuous.

Self-intersection is due to the fact that

$$\lim_{t \to -\infty} f(t) = \lim_{t \to +\infty} f(t) = f(0) \,.$$

Parametric curves

If we consider a curve

 $f:[a,b]\to \mathcal{E}$

and we assume that *f* is injective on the entire **closed** interval [*a*, *b*], then the trace

f([a,b])

of *f* has no self-intersection. Such curves are usually called *Jordan arcs* or *simple arcs*.

Because [a, b] is compact, f is in fact a homeomorphism between [a, b] and f([a, b]).

Many fractal curves are only continuous Jordan arcs that are not differentiable.

Parametric curves

It is possible that the trace of a curve be defined by many parameterizations, as illustrated by the unit circle, which is the trace of the parameterized curves $f_k :]0, 2\pi[\to \mathcal{E} \text{ (or } f_k : [0, 2\pi] \to \mathcal{E})$, where

$$f_k(t) = (\cos kt, \sin kt),$$

with $k \ge 1$.

A clean way to handle this phenomenon is to define a notion of *geometric arc curve*. For our purposes, it suffices to define a notion of *change of parameter* which does not change the "geometric shape" of the trace.

Parametric curves

Recall that a *diffeomorphism* $g :]a, b[\to]c, d[$ *of class* C^p from an open interval]a, b[to another open interval]c, d[is a bijection, such that both $g :]a, b[\to]c, d[$ and its inverse $g^{-1} :]c, d[\to]a, b[$ are C^p -functions.

This implies that $g'(t) \neq 0$ for every $t \in]a, b[$.

Definition 1.3. Two regular curves $f :]a, b[\to \mathcal{E} \text{ and } h :]c, d[\to \mathcal{E} \text{ of class } C^p$, with $p \ge 1$, are *C^p-equivalent* iff there is a diffeomorphism $g \to]a, b[\to]c, d[$ of class C^p such that f is equal to $h \circ g$.

It is immediately verified that Definition 1.3 yields an equivalence relation on open curves.

Parametric curves

For instance, consider the regular curves $f : [-1, 1] \rightarrow \mathcal{E}$ and $h : [2, 6] \rightarrow \mathcal{E}$ given by

$$f(t) = (2t, t^2)$$
 and $h(s) = \left(s - 4, \frac{s^2 - 8s + 16}{4}\right)$

Note that $f = h \circ g$, where $g : [-1,1] \rightarrow [2,6]$ is the diffeomorphism given by $g(r) = 2 \cdot r + 4$.

Parametric curves

Definition 1.4. For any open curve $f : [a, b] \to \mathcal{E}$ of class C^p (or curve $f : [a, b] \to \mathcal{E}$ of class C^p), with $p \ge 1$, given any point $M_0 = f(t)$ on the curve, if f is locally injective at M_0 and for any point $M_1 = f(t+h)$ near M_0 , if the line $T_{t,h}$ determined by the points M_0 and M_1 has a limit T_t when $h \ne 0$ approaches 0, we say that T_t is the *tangent line to* f *in* $M_0 = f(t)$ *at* t.

Parametric curves

For simplicity, we will often say tangent, instead of tangent line.

The definition is simpler when *f* is a simple curve (there is no danger that $M_1 = M_0$ when $h \neq 0$).

The following lemma shows why regular points are important.

Lemma 1.1. For any open curve $f :]a, b[\to \mathcal{E} \text{ of class } C^p \text{ (or curve } f : [a, b] \to \mathcal{E} \text{ of class } C^p)$, with $p \ge 1$, given any point $M_0 = f(t)$ on the curve, if M_0 is a regular point at t, then the tangent line to f in M_0 at t exists and is determined by the derivative f'(t) of f at t.

Parametric curves

If f'(t) = 0, the above argument breaks down.

However, if *f* is a C^p -function and $f^{(p)}(t) \neq 0$ for some $p \geq 2$, where *p* is the smallest integer with that property, we can show that the line $T_{t,h}$ has the limit determined by M_0 and the derivative $f^{(p)}(t)$. Thus, the tangent line may still exist at a stationary point.

Parametric curves

For example, the curve f defined by the map $t \mapsto (t^2, t^3)$ is a C^{∞} -function, but f'(0) = 0. Nevertheless, the tangent at the origin is defined for t = 0 (it is the *x*-axis).

