Introduction to Computational Manifolds and Applications

Part 1 - Foundations

Prof. Jean Gallier
jean@cis.upenn.edu

Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA, USA

Surfaces

Parametric Surfaces

What is a surface?

A precise answer cannot really be given without introducing the concept of a manifold.

An informal answer is to say that a surface is a set of points in \mathbb{E}^{3} such that, for every point p on the surface, there is a small neighborhood U of p that is continuously deformable into a little flat open disk.

Thus, a surface should really have some topology.

Also, locally, unless the point p is "singular", the surface looks like a plane.

Surfaces

Parametric Surfaces

As in the case of curves, properties of surfaces can be classified into local properties and global properties.

Local properties are the properties that hold in a small neighborhood of a point on a surface.

Curvature is a local property.

Local properties can be studied more conveniently by assuming that the surface is parametrized locally.

Surfaces

Parametric Surfaces

A parametric surface is a map

$$
X: \Omega \rightarrow \mathbb{E}^{3},
$$

where Ω is some open subset of the plane \mathbb{E}^{2}, and X is at least C^{3}-continuous.

Actually, we will need to impose an extra condition on a surface X so that the tangent plane (and the normal) at any point is defined. Again, this leads us to consider curves on X.

Surfaces

Parametric Surfaces

A curve C on X is defined as a map

$$
C: t \mapsto X(u(t), v(t)),
$$

where u and v are continuous functions on some open interval I contained in Ω.

Surfaces

Parametric Surfaces

We also assume that the plane curve $t \mapsto(u(t), v(t))$ is regular, that is, that

$$
\left(\frac{d u}{d t}(t), \frac{d v}{d t}(t)\right) \neq(0,0)
$$

for all $t \in I$.

Surfaces

Parametric Surfaces

For example, the curves

$$
v \mapsto X\left(u_{0}, v\right)
$$

for some constant u_{0} are called u-curves, and the curves

$$
u \mapsto X\left(u, v_{0}\right)
$$

for some constant v_{0} are called v-curves. Such curves are also called the coordinate curves.

Surfaces

Parametric Surfaces

The tangent vector, $\frac{d C}{d t}(t)$, to C at t can be computed using the chain rule:

$$
\frac{d C}{d t}(t)=\frac{d X}{d u}(u(t), v(t)) \cdot \frac{d u}{d t}(t)+\frac{d X}{d v}(u(t), v(t)) \cdot \frac{d v}{d t}(t) .
$$

Note that

$$
\frac{d C}{d t}(t), \quad \frac{d X}{d u}(u(t), v(t)), \quad \text { and } \quad \frac{d X}{d v}(u(t), v(t))
$$

are vectors, but for simplicity of notation, we omit the vector symbol in these expressions.

Surfaces

Parametric Surfaces

It is customary to use the following abbreviations: the partial derivatives

$$
\frac{d X}{d u}(u(t), v(t)) \quad \text { and } \quad \frac{d X}{d v}(u(t), v(t))
$$

are denoted as $\boldsymbol{X}_{u}(t)$ and $\boldsymbol{X}_{v}(t)$, or even as \boldsymbol{X}_{u} and \boldsymbol{X}_{v}, and the derivatives

$$
\frac{d C}{d t}(t), \quad \frac{d u}{d t}(t), \quad \text { and } \quad \frac{d v}{d t}(t)
$$

are denoted as $\dot{C}(t), \dot{u}(t)$ and $\dot{v}(t)$, or even as \dot{C}, \dot{u}, and \dot{v}.

Surfaces

Parametric Surfaces

When the curve C is parametrized by arc length s, we denote

$$
\frac{d C}{d s}(s), \quad \frac{d u}{d s}(s), \quad \text { and } \quad \frac{d v}{d s}(s)
$$

as $C^{\prime}(s), u^{\prime}(s)$, and $v^{\prime}(s)$, or even as C^{\prime}, u^{\prime}, and v^{\prime}. Thus, we reserve the prime notation to the case where the parametrization of C is by arc length.

Note that it is the curve

$$
C: t \mapsto X(u(t), v(t))
$$

which is parametrized by arc length, not the curve

$$
t \mapsto(u(t), v(t))
$$

Surfaces

Parametric Surfaces

Using these notations, $\dot{C}(t)$ is expressed as follows:

$$
\dot{C}(t)=\boldsymbol{X}_{u}(t) \dot{u}(t)+\boldsymbol{X}_{v}(t) \dot{v}(t),
$$

or simply as

$$
\dot{C}=X_{u} \dot{u}+X_{v} \dot{v} .
$$

Now, if we want $\dot{C} \neq 0$ for all regular curves

$$
t \mapsto(u(t), v(t)),
$$

we must require that

$$
\boldsymbol{X}_{u} \text { and } \boldsymbol{X}_{v}
$$

be linearly independent. Equivalently, we must require that the cross product, $\boldsymbol{X}_{u} \times$ X_{v} be non-null.

Surfaces

Parametric Surfaces

Definition 3.1. A surface patch X is a map

$$
X: \Omega \rightarrow \mathbb{E}^{3}
$$

where Ω is some open subset of the plane \mathbb{R}^{2} and where X is at least C^{3}-continuous.

We say that the surface X is regular at $(u, v) \in \Omega$ iff $\boldsymbol{X}_{u} \times \boldsymbol{X}_{v} \neq \mathbf{0}$, and we also say that $p=X(u, v)$ is a regular point of X. If $\boldsymbol{X}_{u} \times \boldsymbol{X}_{v}=\mathbf{0}$, we say that $p=X(u, v)$ is a singular point of X. The surface X is regular on Ω iff $\boldsymbol{X}_{u} \times \boldsymbol{X}_{v} \neq \mathbf{0}$, for all points (u, v) in Ω.

The subset $X(\Omega)$ of \mathbb{E}^{3} is called the trace of the surface X.

Surfaces

Parametric Surfaces

Let $\Omega=]-1,1[\times]-1,1[$, and let X be the surface patch defined by

$$
x=\frac{2 a u}{u^{2}+v^{2}+1}, y=\frac{2 b v}{u^{2}+v^{2}+1}, z=\frac{c\left(1-u^{2}-v^{2}\right)}{u^{2}+v^{2}+1},
$$

where $a, b, c>0$.

The surface X is a portion of an ellipsoid, and it is shown below, for $a=5, b=4$, $c=3$.

Surfaces

Parametric Surfaces

The curve $C(t)=X\left(t, t^{2}\right)$ on the surface X is also displayed, for $\left.t \in\right]-1,1[$.

Surfaces

Parametric Surfaces

For a more exotic example, the function $X: \mathbb{E}^{2} \rightarrow \mathbb{E}^{3}$ defined by

$$
\begin{aligned}
& F_{1}(u, v)=u \\
& F_{2}(u, v)=v \\
& F_{3}(u, v)=u^{3}-3 v^{2} u
\end{aligned}
$$

represents what is known as the monkey saddle.

Surfaces

Parametric Surfaces

Surfaces

Parametric Surfaces

It often desirable to define a (regular) surface patch $X: \Omega \rightarrow \mathbb{E}^{3}$, where Ω is a closed subset of \mathbb{E}^{2}.

If Ω is a closed set, we assume that there is some open subset U containing Ω and such that X can be extended to a (regular) surface over U (i.e., that X is at least C^{3}-continuous).

Surfaces

Parametric Surfaces

Given a regular point $p=X(u, v)$, since the tangent vectors to all the curves passing through a given point are of the form $X_{u} \dot{u}+X_{v} \dot{v}$, it is obvious that they form a vector space of dimension 2 isomorphic to \mathbb{R}^{2}, called the tangent space at p, and denoted as $T_{p}(X)$.

Note that $\left(\boldsymbol{X}_{u}, \boldsymbol{X}_{v}\right)$ is a basis of this vector space $T_{p}(X)$.

Surfaces

Parametric Surfaces

The set of tangent lines passing through p and having some tangent vector in $T_{p}(X)$ as direction is an affine plane called the (affine) tangent plane at p. Geometrically, this is an object different from $T_{p}(X)$ and it should be denoted differently (perhaps as $A T_{p}(X)$?).

Surfaces

Parametric Surfaces

The unit vector

$$
\boldsymbol{N}_{p}=\frac{\boldsymbol{X}_{u} \times \boldsymbol{X}_{v}}{\left\|\boldsymbol{X}_{u} \times \boldsymbol{X}_{v}\right\|}
$$

is called the unit normal vector at p, and the line through p of direction N_{p} is the normal line to X at p.

This time, we can use the notation N_{p} for the line, to distinguish it from the vector N_{p}.

Surfaces

Parametric Surfaces

The fact that we are not requiring the map X defining a surface $X: \Omega \rightarrow \mathbb{E}^{3}$ to be injective may cause problems. Indeed, if the map X is not injective, it may happen that

$$
p=X\left(u_{0}, v_{0}\right)=X\left(u_{1}, v_{1}\right)
$$

for some $\left(u_{0}, v_{0}\right)$ and $\left(u_{1}, v_{1}\right)$ such that

$$
\left(u_{0}, v_{0}\right) \neq\left(u_{1}, v_{1}\right) .
$$

Indeed, we really have two pairs of partial derivatives, i.e., $\left(\boldsymbol{X}_{u}\left(u_{0}, v_{0}\right), \boldsymbol{X}_{v}\left(u_{0}, v_{0}\right)\right)$ and $\left(\boldsymbol{X}_{u}\left(u_{1}, v_{1}\right), \boldsymbol{X}_{v}\left(u_{1}, v_{1}\right)\right)$, and the planes spanned by these pairs could be distinct.

Surfaces

Parametric Surfaces

In this case, there are really two tangent planes

$$
T_{\left(u_{0}, v_{0}\right)}(X) \quad \text { and } \quad T_{\left(u_{1}, v_{1}\right)}(X)
$$

at the point p where X has a self-intersection.

Similarly, the normal \boldsymbol{N}_{p} is not well defined, and we really have two normals, $\boldsymbol{N}_{\left(u_{0}, v_{0}\right)}$ and $\boldsymbol{N}_{\left(u_{1}, v_{1}\right)}$, at p.

We can avoid the problem entirely by assuming that X is injective, although this will rule out some surfaces that come up in practice.

Surfaces

Parametric Surfaces

The tangent space, $T_{p}(X)$, may also be undefined when p is not a regular point. For example, consider the parametric surface $X=(x(u, v), y(u, v), z(u, v))$ defined such that

$$
\begin{aligned}
& x=u\left(u^{2}+v^{2}\right) \\
& y=v\left(u^{2}+v^{2}\right) \\
& z=u^{2} v-v^{3} / 3
\end{aligned}
$$

Note that all the partial derivatives at $(u, v)=(0,0)$ are zero. So, the tangent space is undefined at the origin, and hence the origin is a singular point of the surface X. Indeed, one can check that the tangent lines to the surface at the origin do not lie in a plane.

Surfaces

Parametric Surfaces

Surfaces

Surfaces in a More General Sense

In most applications, we are interested in the trace

$$
S=X(\Omega)
$$

of a surface $X: \Omega \rightarrow \mathbb{E}^{3}$, rather than the actual parametrization of S by X.

Since S is a subset of \mathbb{E}^{3}, it inherits the subspace topology from \mathbb{E}^{3}; namely, a subset $U \subseteq S$ is open iff $U=S \cap B$, for some open subset $B \subseteq \mathbb{E}^{3}$.

Surfaces

Surfaces in a More General Sense

It is then natural to require not only that

$$
X: \Omega \rightarrow \mathbb{E}^{3}
$$

be injective and continuous, but that its inverse,

$$
X^{-1}: S \rightarrow \Omega
$$

be continuous. This means that

$$
X: \Omega \rightarrow \mathbb{E}^{3}
$$

is a homeomorphism between $\Omega \subseteq \mathbb{E}^{2}$ and $S \subseteq \mathbb{E}^{3}$, considered as a topological space. One of the benefits of requiring that X is a homeomorphism is that S can't have self-intersections.

Surfaces

Surfaces in a More General Sense

We have the following provisional definition of a surface:

Definition 3.2. A surface is a subset $S \subseteq \mathbb{E}^{3}$, such that there is some open subset $\Omega \subseteq \mathbb{E}^{2}$, and some smooth map, $\varphi: \Omega \rightarrow \mathbb{E}^{3}$, such that φ is a homeomorphism from Ω to S, and $(d \varphi)_{t}$ is injective for every $t \in \Omega$; equivalently, the matrix $J(\varphi)(t)$ has rank 2.

The $\operatorname{map} \varphi$ is called a parametrization of the surface S.

Surfaces

Surfaces in a More General Sense

The reason for requiring $(d \varphi)_{t}$ to be injective for every $t \in \Omega$ is to ensure that the tangent plane at $p=\varphi(t)$ be defined for all $p \in S$.

Definition 3.2 is good, in the sense that it allows us to "do calculus" on the surface S, by making use of the continuous maps φ and φ^{-1}. However, Definition 3.2 imposes a major restriction on the surfaces defined in this fashion: they cannot be compact spaces.

Intuitively speaking, we can't define closed surfaces. This is because if S was compact, then Ω would be compact too, because φ^{-1} is continuous; but this is absurd since Ω is open.

Consequently, a simple sphere, $S^{2} \subseteq \mathbb{E}^{3}$, is not a surface according to Definition 3.2.

Surfaces

Surfaces in a More General Sense

The problem is that Definition 3.2 is too global. We need a local definition.

Instead of requiring a single parametrization for S, for every point p on S, we require that some open subset $U \subseteq S$ containing p have a parametrization, $\varphi_{U}: \Omega_{U} \rightarrow$ \mathbb{E}^{3}, where φ_{U} is a homeomorphism from Ω_{U} to U. This leads us to the following definition:

Definition 3.3. A surface is a subset $S \subseteq \mathbb{E}^{3}$, such that for every point $p \in S$, there is some open subset $\Omega \subseteq \mathbb{E}^{2}$, some open subset $B \subseteq \mathbb{E}^{3}$ with $p \in B$, and a smooth map

$$
\varphi: \Omega \rightarrow \mathbb{E}^{3},
$$

such that φ is a homeomorphism from Ω to $\varphi(\Omega)=U=S \cap B$, and $(d \varphi)_{q}$ is injective, where $q=\varphi^{-1}(p)$; equivalently, the Jacobian matrix $J(\varphi)(q)$ of $d \varphi$ at $q \in \Omega$ has rank 2.

Surfaces

Surfaces in a More General Sense

Each map φ is called a parametrization of the surface S.

Clearly, we can define a surface in \mathbb{E}^{N} (where $N>3$) by using smooth maps,

$$
\varphi: \Omega \rightarrow \mathbb{E}^{N}
$$

which are homeomorphisms from an open subset, Ω, of \mathbb{E}^{2} to an open subset, $U=$ $\varphi(\Omega)$, of \mathbb{E}^{N}.

Surfaces

Surfaces in a More General Sense

The unit sphere S^{2} in \mathbb{E}^{3} defined such that

$$
S^{2}=\left\{(x, y, z) \in \mathbb{E}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}
$$

is a smooth surface, because it can be parametrized using the following two maps:

$$
\varphi_{1}: \mathbb{E}^{2} \rightarrow S^{2}-\{(0,0,1)\} \quad \text { and } \quad \varphi_{2}: \mathbb{E}^{2} \rightarrow S^{2}-\{(0,0,-1)\}
$$

where

$$
\varphi_{1}:(u, v) \mapsto\left(\frac{2 u}{u^{2}+v^{2}+1}, \frac{2 v}{u^{2}+v^{2}+1}, \frac{u^{2}+v^{2}-1}{u^{2}+v^{2}+1}\right)
$$

and

$$
\varphi_{2}:(u, v) \mapsto\left(\frac{2 u}{u^{2}+v^{2}+1}, \frac{2 v}{u^{2}+v^{2}+1}, \frac{1-u^{2}-v^{2}}{u^{2}+v^{2}+1}\right) .
$$

Surfaces

Surfaces in a More General Sense

Surfaces

Surfaces in a More General Sense

Surfaces

Surfaces in a More General Sense

The map φ_{1} corresponds to the inverse of the stereographic projection from the north pole, $N=(0,0,1) \in \mathbb{E}^{3}$, onto the plane $z=0$, and the map φ_{2} corresponds to the inverse of the stereographic projection from the south pole, $S=(0,0,-1) \in \mathbb{E}^{3}$, onto the plane $z=0$.

Surfaces

Surfaces in a More General Sense

Using φ_{1}, the open lower hemisphere is parametrized by the open disk of center O and radius 1 contained in the plane $z=0$. Similarly, using φ_{2}, the open upper hemisphere is parametrized by the open disk of center O and radius 1 contained in the plane $z=0$.

The map φ_{1}^{-1} assigns local coordinates to the points in the open lower hemisphere of S^{2}, while the map φ_{2}^{-1} assigns local coordinates to the points in the open upper hemisphere.

Surfaces

Surfaces in a More General Sense

From Definition 3.3, we see that a surface is the union of the images of a collection of parametrizations. So, if a point p belongs to the ranges of two different parametrizations, we will dispose of two different coordinate systems near p. More specifically, let

$$
X_{i}: U_{i} \rightarrow X_{i}(U) \subseteq S, \quad \text { for } i=1,2,
$$

be two parametrizations of S such that $\Omega=X_{1}\left(U_{1}\right) \cap X_{2}\left(U_{2}\right)$ is nonempty. Then the map

$$
h=X_{2}^{-1} \circ X_{1}: X_{1}^{-1}(\Omega) \rightarrow X_{2}^{-1}(\Omega)
$$

is a homeomorphism taking coordinates in U_{1} with respect to X_{1} into coordinates in U_{2} with respect to X_{2}. The map h is said to be a change of parameters or a change of coordinates.

Surfaces

Surfaces in a More General Sense

It turns out that the map h is a diffeomorphism.

Surfaces

Surfaces in a More General Sense

To prove this claim, we will use the following lemma:

Lemma 3.1. Let S be a surface and

$$
X: U \rightarrow X(U) \subseteq S
$$

a parametrization whose image contains the point p. Let $q \in U$ be such that $q=$ $X^{-1}(p)$. Then, there exists an open subset, V, of U containing the point q and an orthogonal projection,

$$
\pi: \mathbb{E}^{3} \rightarrow \mathbb{E}^{2}
$$

onto some of the three coordinates planes of \mathbb{E}^{3} such that $W=(\pi \circ X)(V)$ is open in \mathbb{E}^{2} and

$$
\pi \circ X: V \rightarrow W
$$

is a diffeomorphism.

Surfaces

Surfaces in a More General Sense

Surfaces

Surfaces in a More General Sense

Theorem 3.2. Every change of coordinates is a diffeomorphism.

Surfaces

Surfaces in a More General Sense

It is interesting to see how the unit normal vector N_{p} changes under a change of parameters.

Assume that $u=u(r, s)$ and $v=v(r, s)$, where $(r, s) \mapsto(u, v)$ is a diffeomorphism.

Surfaces

Surfaces in a More General Sense

By the chain rule,

$$
\begin{aligned}
\boldsymbol{X}_{r} \times \boldsymbol{X}_{s} & =\left(\boldsymbol{X}_{u} \frac{\partial u}{\partial r}+\boldsymbol{X}_{v} \frac{\partial v}{\partial r}\right) \times\left(\boldsymbol{X}_{u} \frac{\partial u}{\partial s}+\boldsymbol{X}_{v} \frac{\partial v}{\partial s}\right) \\
& =\left(\frac{\partial u}{\partial r} \frac{\partial v}{\partial s}-\frac{\partial u}{\partial s} \frac{\partial v}{\partial r}\right)\left(\boldsymbol{X}_{u} \times \boldsymbol{X}_{v}\right) \\
& =\left|\begin{array}{cc}
\frac{\partial u}{\partial r} & \frac{\partial u}{\partial s} \\
\frac{\partial v}{\partial r} & \frac{\partial v}{\partial s}
\end{array}\right|\left(\boldsymbol{X}_{u} \times \boldsymbol{X}_{v}\right) \\
& =\frac{\partial(u, v)}{\partial(r, s)}\left(\boldsymbol{X}_{u} \times \boldsymbol{X}_{v}\right),
\end{aligned}
$$

denoting the Jacobian determinant of the map $(r, s) \mapsto(u, v)$ as $\frac{\partial(u, v)}{\partial(r, s)}$.

Surfaces

Surfaces in a More General Sense

Then, the relationship between the unit vectors $\boldsymbol{N}_{(u, v)}$ and $\boldsymbol{N}_{(r, s)}$ is

$$
\boldsymbol{N}_{(r, s)}=\boldsymbol{N}_{(u, v)} \operatorname{sign}\left(\frac{\partial(u, v)}{\partial(r, s)}\right) .
$$

We will therefore restrict our attention to changes of variables such that the determinant

$$
\frac{\partial(u, v)}{\partial(r, s)}
$$

is positive.

Surfaces

Surfaces in a More General Sense

One should also note that the condition

$$
\boldsymbol{X}_{u} \times \boldsymbol{X}_{v} \neq 0
$$

is equivalent to the fact that the Jacobian matrix, $J(X)(u, v)$, of the derivative of the map $X: \Omega \rightarrow \mathbb{E}^{3}$ has rank 2, i.e., that the derivative $(d X)_{(u, v)}$ of X at (u, v) is injective.

Surfaces

Surfaces in a More General Sense

Indeed, the Jacobian matrix of the derivative of the map

$$
(u, v) \mapsto X(u, v)=(x(u, v), y(u, v), z(u, v))
$$

is

$$
\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v}
\end{array}\right)
$$

and $\boldsymbol{X}_{u} \times \boldsymbol{X}_{v} \neq \mathbf{0}$ is equivalent to saying that one of the minors of order 2 is invertible.

Thus, a regular surface patch is an immersion of an open subset of \mathbb{E}^{2} into \mathbb{E}^{3}.

