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Parametric Surfaces

What is a surface?

A precise answer cannot really be given without introducing the concept of a mani-
fold.

An informal answer is to say that a surface is a set of points in E3 such that, for every
point p on the surface, there is a small neighborhood U of p that is continuously
deformable into a little flat open disk.

Thus, a surface should really have some topology.

Also, locally, unless the point p is "singular", the surface looks like a plane.
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Parametric Surfaces

As in the case of curves, properties of surfaces can be classified into local properties
and global properties.

Local properties are the properties that hold in a small neighborhood of a point on a
surface.

Curvature is a local property.

Local properties can be studied more conveniently by assuming that the surface is
parametrized locally.
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Parametric Surfaces

Actually, we will need to impose an extra condition on a surface X so that the tangent
plane (and the normal) at any point is defined. Again, this leads us to consider curves
on X.

A parametric surface is a map
X : Ω→ E3 ,

where Ω is some open subset of the plane E2, and X is at least C3-continuous.

X

Ω

S

E2

E3
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Parametric Surfaces

A curve C on X is defined as a map

C : t �→ X(u(t), v(t)) ,

where u and v are continuous functions on some open interval I contained in Ω.

t !→ (u(t), v(t))

X
C

I

S

Ω

E2

E3
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Parametric Surfaces

We also assume that the plane curve t �→ (u(t), v(t)) is regular, that is, that
�

du
dt

(t),
dv
dt

(t)
�
�= (0, 0)

for all t ∈ I.
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Parametric Surfaces

For example, the curves
v �→ X(u0, v)

for some constant u0 are called u-curves, and the curves

u �→ X(u, v0)

for some constant v0 are called v-curves. Such curves are also called the coordinate
curves.

v

X(u0, v)

u

Ω

X
S

E2

E3
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Parametric Surfaces

The tangent vector,
dC
dt

(t), to C at t can be computed using the chain rule:

dC
dt

(t) =
dX
du

(u(t), v(t)) · du
dt

(t) +
dX
dv

(u(t), v(t)) · dv
dt

(t) .

Note that
dC
dt

(t) ,
dX
du

(u(t), v(t)) , and
dX
dv

(u(t), v(t))

are vectors, but for simplicity of notation, we omit the vector symbol in these expres-
sions.
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Parametric Surfaces

It is customary to use the following abbreviations: the partial derivatives

dX
du

(u(t), v(t)) and
dX
dv

(u(t), v(t))

are denoted as Xu(t) and Xv(t), or even as Xu and Xv, and the derivatives

dC
dt

(t) ,
du
dt

(t) , and
dv
dt

(t)

are denoted as Ċ(t), u̇(t) and v̇(t), or even as Ċ, u̇, and v̇.
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Parametric Surfaces

When the curve C is parametrized by arc length s, we denote

dC
ds

(s) ,
du
ds

(s) , and
dv
ds

(s)

as C�(s), u�(s), and v�(s), or even as C�, u�, and v�. Thus, we reserve the prime nota-
tion to the case where the parametrization of C is by arc length.

Note that it is the curve
C : t �→ X(u(t), v(t))

which is parametrized by arc length, not the curve

t �→ (u(t), v(t)) .
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Parametric Surfaces

Using these notations, Ċ(t) is expressed as follows:

Ċ(t) = Xu(t)u̇(t) + Xv(t)v̇(t) ,

or simply as
Ċ = Xuu̇ + Xvv̇ .

Now, if we want Ċ �= 0 for all regular curves

t �→ (u(t), v(t)) ,

we must require that
Xu and Xv

be linearly independent. Equivalently, we must require that the cross product, Xu ×
Xv be non-null.
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Parametric Surfaces

Definition 3.1. A surface patch X is a map

X : Ω→ E3 ,

where Ω is some open subset of the plane R2 and where X is at least C3-continuous.

We say that the surface X is regular at (u, v) ∈ Ω iff Xu × Xv �= 0, and we also say
that p = X(u, v) is a regular point of X. If Xu × Xv = 0, we say that p = X(u, v) is a
singular point of X. The surface X is regular on Ω iff Xu × Xv �= 0, for all points (u, v)
in Ω.

The subset X(Ω) of E3 is called the trace of the surface X.
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Parametric Surfaces

The surface X is a portion of an ellipsoid, and it is shown below, for a = 5, b = 4,
c = 3.

X(Ω)

Ω X

Let Ω = ]− 1, 1[× ]− 1, 1[ , and let X be the surface patch defined by

x =
2au

u2 + v2 + 1
, y =

2bv
u2 + v2 + 1

, z =
c(1− u2 − v2)

u2 + v2 + 1
,

where a, b, c > 0.



Surfaces

Computational Manifolds and Applications (CMA) - 2011, IMPA, Rio de Janeiro, RJ, Brazil 14

Parametric Surfaces

The curve C(t) = X(t, t2) on the surface X is also displayed, for t ∈ ]− 1, 1[.
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Parametric Surfaces

For a more exotic example, the function X : E2 → E3 defined by

F1(u, v) = u,

F2(u, v) = v,

F3(u, v) = u3 − 3v2u,

represents what is known as the monkey saddle.
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Parametric Surfaces
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Parametric Surfaces

It often desirable to define a (regular) surface patch X : Ω → E3, where Ω is a closed
subset of E2.

If Ω is a closed set, we assume that there is some open subset U containing Ω and
such that X can be extended to a (regular) surface over U (i.e., that X is at least
C3-continuous).
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Parametric Surfaces

Given a regular point p = X(u, v), since the tangent vectors to all the curves passing
through a given point are of the form Xuu̇ + Xvv̇, it is obvious that they form a vector
space of dimension 2 isomorphic to R2, called the tangent space at p, and denoted as
Tp(X).

Note that (Xu, Xv) is a basis of this vector space Tp(X).



Surfaces

Computational Manifolds and Applications (CMA) - 2011, IMPA, Rio de Janeiro, RJ, Brazil 19

Parametric Surfaces

The set of tangent lines passing through p and having some tangent vector in Tp(X)
as direction is an affine plane called the (affine) tangent plane at p. Geometrically, this
is an object different from Tp(X) and it should be denoted differently (perhaps as
ATp(X)?).

p

ATp(X)
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Parametric Surfaces

This time, we can use the notation Np for the line, to distinguish it from the vector
Np.

The unit vector
Np =

Xu × Xv
�Xu × Xv�

is called the unit normal vector at p, and the line through p of direction Np is the normal
line to X at p.

p

ATp(X)Np
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Parametric Surfaces

The fact that we are not requiring the map X defining a surface X : Ω → E3 to be
injective may cause problems. Indeed, if the map X is not injective, it may happen
that

p = X(u0, v0) = X(u1, v1)

for some (u0, v0) and (u1, v1) such that

(u0, v0) �= (u1, v1) .

Indeed, we really have two pairs of partial derivatives, i.e., (Xu(u0, v0), Xv(u0, v0))
and (Xu(u1, v1), Xv(u1, v1)), and the planes spanned by these pairs could be distinct.
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Parametric Surfaces

In this case, there are really two tangent planes

T(u0,v0)(X) and T(u1,v1)(X)

at the point p where X has a self-intersection.

Similarly, the normal Np is not well defined, and we really have two normals, N(u0,v0)
and N(u1,v1), at p.

We can avoid the problem entirely by assuming that X is injective, although this will
rule out some surfaces that come up in practice.
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Parametric Surfaces

The tangent space, Tp(X), may also be undefined when p is not a regular point. For
example, consider the parametric surface X = (x(u, v), y(u, v), z(u, v)) defined such
that

x = u(u2 + v2),

y = v(u2 + v2),

z = u2v− v3/3 .

Note that all the partial derivatives at (u, v) = (0, 0) are zero. So, the tangent space
is undefined at the origin, and hence the origin is a singular point of the surface X.
Indeed, one can check that the tangent lines to the surface at the origin do not lie in
a plane.
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Parametric Surfaces
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Surfaces in a More General Sense

In most applications, we are interested in the trace

S = X(Ω)

of a surface X : Ω→ E3, rather than the actual parametrization of S by X.

Since S is a subset of E3, it inherits the subspace topology from E3; namely, a subset
U ⊆ S is open iff U = S ∩ B, for some open subset B ⊆ E3.
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Surfaces in a More General Sense

It is then natural to require not only that

X : Ω → E3

be injective and continuous, but that its inverse,

X−1
: S → Ω ,

be continuous. This means that

X : Ω → E3

is a homeomorphism between Ω ⊆ E2 and S ⊆ E3, considered as a topological space.

One of the benefits of requiring that X is a homeomorphism is that S can’t have

self-intersections.
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Surfaces in a More General Sense

We have the following provisional definition of a surface:

The map ϕ is called a parametrization of the surface S.

Definition 3.2. A surface is a subset S ⊆ E3, such that there is some open subset
Ω ⊆ E2, and some smooth map, ϕ : Ω → E3, such that ϕ is a homeomorphism from
Ω to S, and (dϕ)t is injective for every t ∈ Ω; equivalently, the matrix J(ϕ)(t) has
rank 2.
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Surfaces in a More General Sense

The reason for requiring (dϕ)t to be injective for every t ∈ Ω is to ensure that the
tangent plane at p = ϕ(t) be defined for all p ∈ S.

Definition 3.2 is good, in the sense that it allows us to "do calculus" on the surface S,

by making use of the continuous maps ϕ and ϕ−1
. However, Definition 3.2 imposes a

major restriction on the surfaces defined in this fashion: they cannot be compact spaces.

Intuitively speaking, we can’t define closed surfaces. This is because if S was com-
pact, then Ω would be compact too, because ϕ−1 is continuous; but this is absurd
since Ω is open.

Consequently, a simple sphere, S2 ⊆ E3, is not a surface according to Definition 3.2.
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Surfaces in a More General Sense

The problem is that Definition 3.2 is too global. We need a local definition.

Instead of requiring a single parametrization for S, for every point p on S, we require
that some open subset U ⊆ S containing p have a parametrization, ϕU : ΩU →
E3, where ϕU is a homeomorphism from ΩU to U. This leads us to the following
definition:

Definition 3.3. A surface is a subset S ⊆ E3, such that for every point p ∈ S, there is
some open subset Ω ⊆ E2, some open subset B ⊆ E3 with p ∈ B, and a smooth map

ϕ : Ω → E3 ,

such that ϕ is a homeomorphism from Ω to ϕ(Ω) = U = S∩ B, and (dϕ)q is injective,
where q = ϕ−1(p); equivalently, the Jacobian matrix J(ϕ)(q) of dϕ at q ∈ Ω has rank
2.
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Surfaces in a More General Sense

Each map ϕ is called a parametrization of the surface S.

Clearly, we can define a surface in EN (where N > 3) by using smooth maps,

ϕ : Ω→ EN

which are homeomorphisms from an open subset, Ω, of E2 to an open subset, U =
ϕ(Ω), of EN .
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Surfaces in a More General Sense

The unit sphere S2 in E3 defined such that

S2 =
�
(x, y, z) ∈ E3 | x2 + y2 + z2 = 1

�

is a smooth surface, because it can be parametrized using the following two maps:

ϕ1 : E2 → S2 − {(0, 0, 1)} and ϕ2 : E2 → S2 − {(0, 0,−1)}

where

ϕ1 : (u, v) �→
�

2u
u2 + v2 + 1

,
2v

u2 + v2 + 1
,

u2 + v2 − 1
u2 + v2 + 1

�

and

ϕ2 : (u, v) �→
�

2u
u2 + v2 + 1

,
2v

u2 + v2 + 1
,

1− u2 − v2

u2 + v2 + 1

�
.
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Surfaces in a More General Sense

p
S2

N
ϕ1(p)
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Surfaces in a More General Sense

p

S2

S

ϕ2(p)
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Surfaces in a More General Sense

The map ϕ1 corresponds to the inverse of the stereographic projection from the north
pole, N = (0, 0, 1) ∈ E3, onto the plane z = 0, and the map ϕ2 corresponds to the
inverse of the stereographic projection from the south pole, S = (0, 0,−1) ∈ E3, onto the
plane z = 0.

p
S2

N
ϕ1(p)

p

S2

S

ϕ2(p)
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Surfaces in a More General Sense

Using ϕ1, the open lower hemisphere is parametrized by the open disk of center
O and radius 1 contained in the plane z = 0. Similarly, using ϕ2, the open upper
hemisphere is parametrized by the open disk of center O and radius 1 contained in
the plane z = 0.

The map ϕ−1
1 assigns local coordinates to the points in the open lower hemisphere

of S2, while the map ϕ−1
2 assigns local coordinates to the points in the open upper

hemisphere.
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Surfaces in a More General Sense

From Definition 3.3, we see that a surface is the union of the images of a collection of
parametrizations. So, if a point p belongs to the ranges of two different parametriza-
tions, we will dispose of two different coordinate systems near p. More specifically,
let

Xi : Ui → Xi(U) ⊆ S , for i = 1, 2 ,

be two parametrizations of S such that Ω = X1(U1)∩ X2(U2) is nonempty. Then the
map

h = X−1
2 ◦ X1 : X−1

1 (Ω) → X−1
2 (Ω)

is a homeomorphism taking coordinates in U1 with respect to X1 into coordinates in
U2 with respect to X2. The map h is said to be a change of parameters or a change of
coordinates.
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Surfaces in a More General Sense

It turns out that the map h is a diffeomorphism.

h = X−1

2
◦X1 : X−1

1
(Ω) → X−1

2
(Ω)

S

E3

u

Ω = X1(U1) ∩X2(U2)
U1 U2

X1(U1) X2(U2)

q1 q2

p

u

vv



Surfaces

Computational Manifolds and Applications (CMA) - 2011, IMPA, Rio de Janeiro, RJ, Brazil 38

Surfaces in a More General Sense

To prove this claim, we will use the following lemma:

Lemma 3.1. Let S be a surface and

X : U → X(U) ⊆ S

a parametrization whose image contains the point p. Let q ∈ U be such that q =
X−1(p). Then, there exists an open subset, V, of U containing the point q and an
orthogonal projection,

π : E3 → E2 ,

onto some of the three coordinates planes of E3 such that W = (π ◦ X)(V) is open
in E2 and

π ◦ X : V → W

is a diffeomorphism.
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Surfaces in a More General Sense

V

(π ◦X)|V

X(U)

π

X

E3

E2

W = (π ◦X)(V )

π(p)

q

p

U
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Surfaces in a More General Sense

Theorem 3.2. Every change of coordinates is a diffeomorphism.

h = X−1

2
◦X1 : X−1

1
(Ω) → X−1

2
(Ω)

S

y

W

Ω = X1(U1) ∩X2(U2)
U1 U2

V

X1(U1) X2(U2)

q1 q2

p

E3

z

x

u

v v

u
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Surfaces in a More General Sense

It is interesting to see how the unit normal vector Np changes under a change of
parameters.

Assume that u = u(r, s) and v = v(r, s), where (r, s) �→ (u, v) is a diffeomorphism.
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Surfaces in a More General Sense

By the chain rule,

Xr × Xs =
�

Xu
∂u
∂r

+ Xv
∂v
∂r

�
×

�
Xu

∂u
∂s

+ Xv
∂v
∂s

�

=
�

∂u
∂r

∂v
∂s
− ∂u

∂s
∂v
∂r

� �
Xu × Xv

�

=

�����

∂u
∂r

∂u
∂s

∂v
∂r

∂v
∂s

�����
�
Xu × Xv

�

=
∂(u, v)
∂(r, s)

�
Xu × Xv

�
,

denoting the Jacobian determinant of the map (r, s) �→ (u, v) as
∂(u, v)
∂(r, s)

.
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Surfaces in a More General Sense

Then, the relationship between the unit vectors N(u,v) and N(r,s) is

N(r,s) = N(u,v) sign
�

∂(u, v)
∂(r, s)

�
.

We will therefore restrict our attention to changes of variables such that the determi-
nant

∂(u, v)
∂(r, s)

is positive.
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Surfaces in a More General Sense

One should also note that the condition

Xu × Xv �= 0

is equivalent to the fact that the Jacobian matrix, J(X)(u, v), of the derivative of the

map X : Ω → E3 has rank 2, i.e., that the derivative (dX)(u,v) of X at (u, v) is injec-

tive.
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Surfaces in a More General Sense

Indeed, the Jacobian matrix of the derivative of the map

(u, v) �→ X(u, v) =
�

x(u, v), y(u, v), z(u, v)
�

is 



∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v





and Xu×Xv �= 0 is equivalent to saying that one of the minors of order 2 is invertible.

Thus, a regular surface patch is an immersion of an open subset of E2 into E3.


