

Introduction to Computational Manifolds and Applications

Part 1 - Foundations

Prof. Jean Gallier

jean@cis.upenn.edu

Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA, USA

Submanifolds embedded in R^N

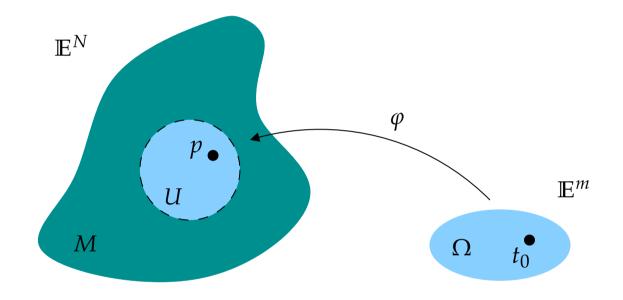
Definition 4.1. Given any integers N, m, with $N \ge m \ge 1$, an m-dimensional smooth manifold in \mathbb{E}^N , for short a manifold, is a nonempty subset M of \mathbb{E}^N such that for every point $p \in M$, there are two open subsets, $\Omega \subseteq \mathbb{E}^m$ and $U \subseteq M$, with $p \in U$, and a smooth function,

$$\varphi:\Omega o \mathbb{E}^N$$
 ,

such that φ is a homeomorphism between Ω and $U = \varphi(\Omega)$, and $(d\varphi)_{t_0}$ is injective, for

$$t_0 = \varphi^{-1}(p) \,.$$

Submanifolds embedded in R^N



The function

$$\varphi:\Omega\to U$$

is called a (*local*) parametrization of M at p. If $0_m \in \Omega$ and $\varphi(0_m) = p$, we say that φ is centered at p.

Submanifolds embedded in R^N

Recall that

$$M \subseteq \mathbb{E}^N$$

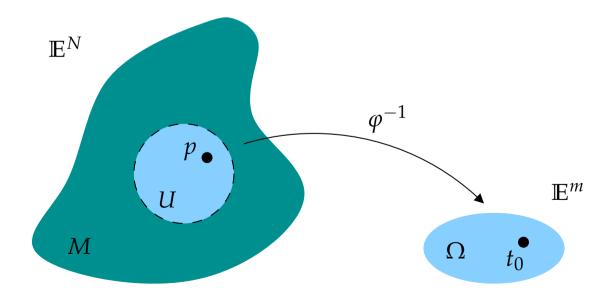
is a topological space under the subspace topology, and U is some open subset of M in the subspace topology, which means that $U = M \cap W$ for some open subset W of \mathbb{E}^N .

Submanifolds embedded in R^N

Since $\varphi : \Omega \to U$ is a homeomorphism, it has an inverse,

$$\varphi^{-1}:U\to\Omega$$
,

that is also a homeomorphism, called a (local) chart.

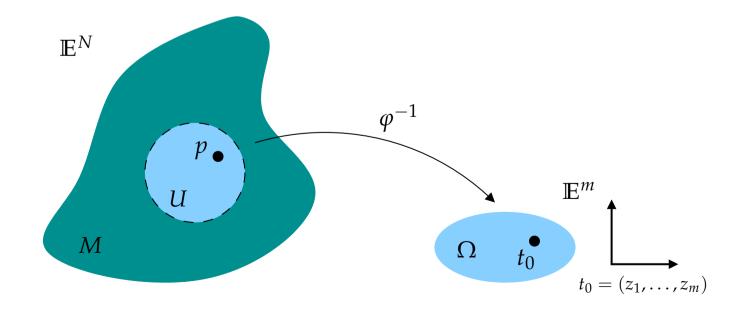


Submanifolds embedded in R^N

Since $\Omega \subseteq \mathbb{E}^m$, for every $p \in M$ and every parametrization $\varphi : \Omega \to U$ of M at p, we have

$$\varphi^{-1}(p)=(z_1,\ldots,z_m)\,,$$

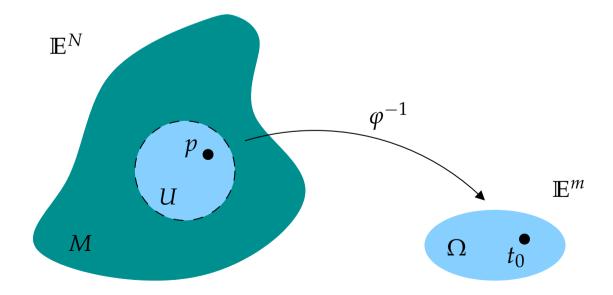
for some $z_i \in \mathbb{E}$, and we call z_1, \ldots, z_m the *local coordinates of p* (with respect to φ^{-1}).



Submanifolds embedded in R^N

We often refer to a manifold *M* without explicitly specifying its dimension (the integer *m*).

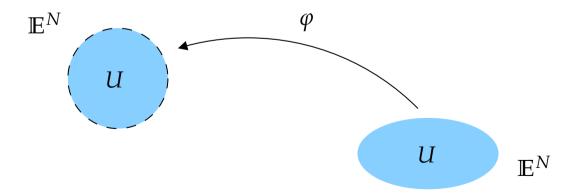
Intuitively, a chart provides a "flattened" local map of a region on a manifold.



Submanifolds embedded in R^N

Example 4.1.

Every open subset, U, of \mathbb{E}^N is a manifold in a trivial way. Indeed, we can use the inclusion map, $\varphi: U \to \mathbb{E}^N$, where $\varphi(p) = p$ for every $p \in U$, as a parametrization. Note that, in this case, there is a single parametrization, namely φ , for every point p in U.



Submanifolds embedded in R^N

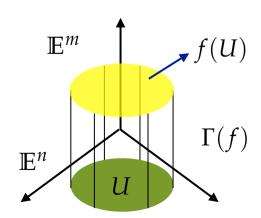
Example 4.2.

For U an open subset of \mathbb{E}^n and

$$f:U\to\mathbb{E}^m$$

the graph of f, $\Gamma(f)$, is defined to be the subspace

$$\Gamma(f) = \{(x, f(x)) \in U \times \mathbb{E}^m\}.$$



Submanifolds embedded in R^N

If f is smooth, then $\Gamma(f)$ is a manifold of dimension n in \mathbb{E}^{n+m} .

Indeed, if we let

$$\varphi: U \to \Gamma(f)$$
 and $\psi: \Gamma(f) \to U$

such that

$$\varphi(x) = (x, f(x))$$
 and $\psi((x, f(x)) = x$,

then φ and ψ are smooth and inverse to each other, and hence they are homeomorphisms.

Submanifolds embedded in R^N

The derivative, $(d\varphi)_x$, of φ at x, which is equal to $(\mathrm{id}_n,(df)_x)$, is clearly injective. So,

 $\Gamma(f)$

is a manifold in \mathbb{E}^{n+m} . That's why many of the familiar surfaces from calculus, for instance, an elliptic or a hyperbolic paraboloid, which are graphs of functions, are manifolds.

Submanifolds embedded in R^N

Example 4.3.

For any two positive integers, m and n, let $M_{m,n}(\mathbb{R})$ be the vector space of all $m \times n$ matrices.

Since $M_{m,n}(\mathbb{R})$ is isomorphic to \mathbb{R}^{mn} , we give it the topology of \mathbb{R}^{mn} .

The *general linear group*, $GL(n, \mathbb{R})$, is by definition the set of matrices

$$GL(n, \mathbb{R}) = \{ A \in M_n(\mathbb{R}) \mid \det(A) \neq 0 \} = \det^{-1}(\mathbb{R} - \{0\}).$$

 $\mathbf{GL}(n, \mathbb{R})$ is a manifold in \mathbb{R}^{n^2} .

Submanifolds embedded in R^N

Indeed, since the function

$$\det: \mathbf{M}_n(\mathbb{R}) \to \mathbb{R}$$

is continuous and $\mathbb{R} - \{0\}$ is open in \mathbb{R} , and since $\mathbf{GL}(n,\mathbb{R})$ is the inverse image of (the open set) $\mathbb{R} - \{0\}$ under the function det, $\mathbf{GL}(n,\mathbb{R})$ is an open set of $\mathbf{M}_n(\mathbb{R}) \approx \mathbb{R}^{n^2}$.

From Example 4.1, we conclude that $GL(n, \mathbb{R})$ is a manifold in \mathbb{R}^{n^2} .

The following two lemmas provide the link with the definition of an abstract manifold:

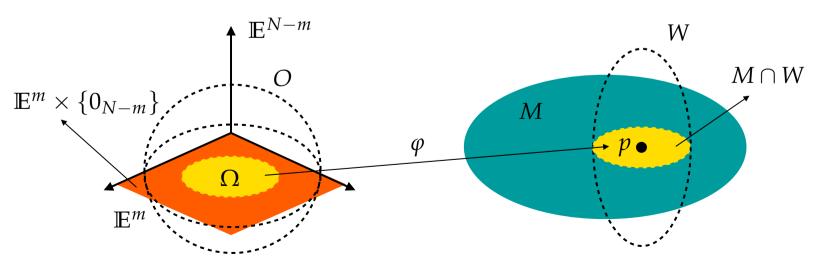
Submanifolds embedded in R^N

Lemma 4.1. Given an m-dimensional manifold M in \mathbb{E}^N , for every $p \in M$ there are two open sets $O, W \subseteq \mathbb{E}^N$, with $0_N \in O$ and $p \in (M \cap W)$, and a smooth diffeomorphism

$$\varphi: O \to W$$

such that

$$\varphi(0_N) = p$$
 and $\varphi(O \cap (\mathbb{E}^m \times \{0_{N-m}\})) = M \cap W$.



Submanifolds embedded in R^N

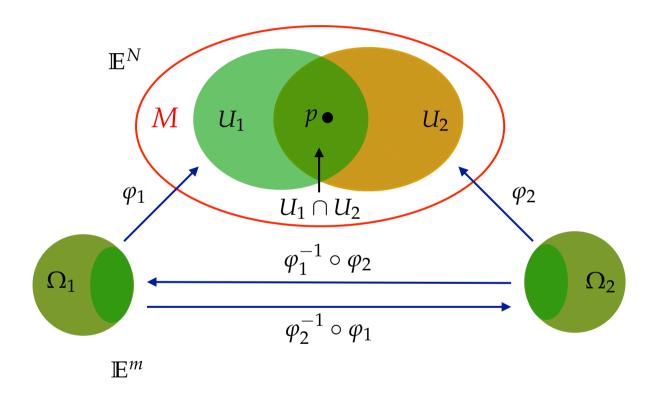
The next lemma is easily shown from Lemma 4.1. It is a key technical result used to show that interesting properties of maps between manifolds do not depend on parametrizations.

Lemma 4.2. Given an m-dimensional manifold M in \mathbb{E}^N , for every $p \in M$ and any two parametrizations, $\varphi_1 : \Omega_1 \to U_1$ and $\varphi_2 : \Omega_2 \to U_2$ of M at p, if $U_1 \cap U_2 \neq \emptyset$, the map

$$\varphi_2^{-1} \circ \varphi_1 : \varphi_1^{-1}(U_1 \cap U_2) \to \varphi_2^{-1}(U_1 \cap U_2)$$

is a smooth diffeomorphism.

Submanifolds embedded in R^N



The maps $\varphi_2^{-1} \circ \varphi_1$ and $\varphi_1^{-1} \circ \varphi_2$ are called *transition maps*.

Submanifolds embedded in R^N

Using Definition 4.1, it may be quite hard to prove that a space is a manifold. Therefore, it is handy to have alternate characterizations such as those given in the next Proposition.

Proposition 4.3. A subset, $M \subseteq \mathbb{E}^{m+k}$, is an m-dimensional manifold if and only if either

- (1) For every $p \in M$, there is some open subset, $W \subseteq \mathbb{E}^{m+k}$, with $p \in W$ and a (smooth) submersion, $f : W \to \mathbb{E}^k$, so that $W \cap M = f^{-1}(0)$, or
- (2) For every $p \in M$, there is some open subset, $W \subseteq \mathbb{E}^{m+k}$, with $p \in W$ and a (smooth) map, $f : W \to \mathbb{E}^k$, so that $(df)_p$ is surjective and $W \cap M = f^{-1}(0)$.

Submanifolds embedded in R^N

Condition (2), although apparently weaker than condition (1), is in fact equivalent to it.

This is because to say that $(df)_p$ is surjective means that the Jacobian matrix of $(df)_p$ has rank k, which means that some determinant is nonzero, and because the determinant function is continuous this must hold in some open subset $W_1 \subseteq W$ containing p.

Consequently, the restriction, f_1 , of f to W_1 is indeed a submersion and

$$f_1^{-1}(0) = W_1 \cap f^{-1}(0) = W_1 \cap (W \cap M) = W_1 \cap M.$$

The proof is based on two technical lemmas that are proved using the inverse function theorem.

Submanifolds embedded in R^N

Lemma 4.4. Let $U \subseteq \mathbb{E}^m$ be an open subset of \mathbb{E}^m and pick some $a \in U$. If

$$f:U\to\mathbb{E}^n$$

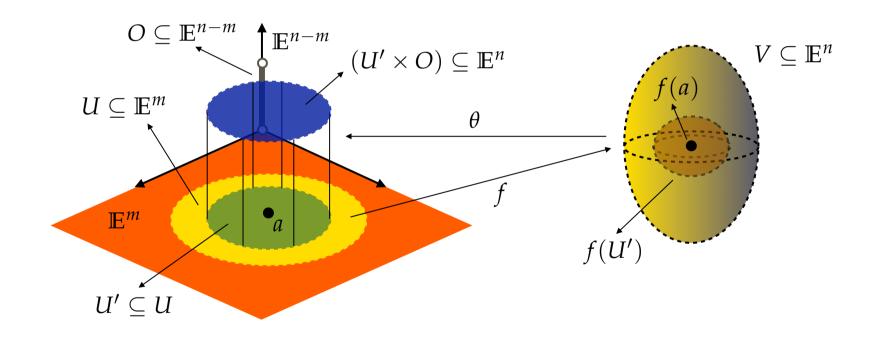
is a smooth immersion at a, i.e., if df_a is injective (and hence, $m \le n$), then there is an open set, $V \subseteq \mathbb{E}^n$, with $f(a) \in V$, an open subset, $U' \subseteq U$, with $a \in U'$ and $f(U') \subseteq V$, an open subset $O \subseteq \mathbb{E}^{n-m}$, and a diffeomorphism, $\theta : V \to (U' \times O)$, so that

$$\theta(f(x_1,\ldots,x_m))=(x_1,\ldots,x_m,0,\ldots,0),$$

for all

$$(x_1,\ldots,x_m)\in U'$$
.

Submanifolds embedded in R^N



Submanifolds embedded in R^N

Lemma 4.6. Let $W \subseteq \mathbb{E}^m$ be an open subset of \mathbb{E}^m and pick some $a \in W$. If

$$f: W \to \mathbb{E}^n$$

is a smooth submersion at a, i.e., if df_a is surjective (and hence, $m \ge n$), then there is an open set, $V \subseteq W \subseteq \mathbb{E}^m$, with $a \in V$, and a diffeomorphism, ψ , with domain $O \subseteq \mathbb{E}^m$, so that

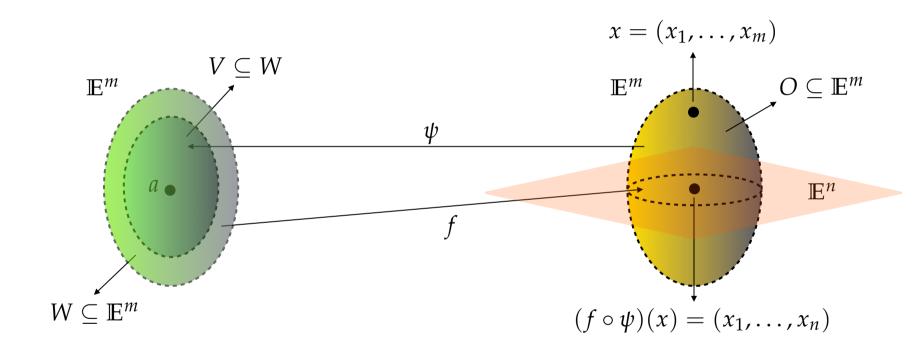
$$\psi(O) = V$$
 and $f(\psi(x_1,\ldots,x_m)) = (x_1,\ldots,x_n)$,

for all

$$(x_1,\ldots,x_m)\in O$$
.

.

Submanifolds embedded in R^N



Using Lemmas 4.5 and 4.6, we can prove the following theorem:

Submanifolds embedded in R^N

Theorem 4.7. A nonempty subset, $M \subseteq \mathbb{E}^N$, is an m-manifold (with $1 \le m \le N$) iff any of the following conditions hold:

(1) For every $p \in M$, there are two open subsets $\Omega \subseteq \mathbb{E}^m$ and $U \subseteq M$, with $p \in U$, and a smooth function

$$\varphi:\Omega o \mathbb{E}^N$$

such that φ is a homeomorphism between Ω and $U = \varphi(\Omega)$, and $(d\varphi)_0$ is injective, where

$$p=\varphi(0)$$
.

(2) For every $p \in M$, there are two open sets $O, W \subseteq \mathbb{E}^N$, with $0_N \in O$ and $p \in (M \cap W)$, and a smooth diffeomorphism $\varphi : O \to W$, such that $\varphi(0_N) = p$ and

$$\varphi(O \cap (\mathbb{E}^m \times \{0_{N-m}\})) = M \cap W.$$

Submanifolds embedded in R^N

- (3) For every $p \in M$, there is some open subset, $W \subseteq \mathbb{E}^N$, with $p \in W$ and a smooth submersion, $f: W \to \mathbb{E}^{N-m}$, so that $W \cap M = f^{-1}(0)$.
- (4) For every $p \in M$, there is some open subset, $W \subseteq \mathbb{E}^N$, with $p \in W$, and N-m smooth functions, $f_i : W \to \mathbb{E}$, so that the linear forms $(df_1)_p, \ldots, (df_{N-m})_p$ are linearly independent and

$$W \cap M = f_1^{-1}(0) \cap \cdots \cap f_{N-m}^{-1}(0).$$

Condition (4) says that locally (that is, in a small open set of M containing $p \in M$), M is "cut out" by N-m smooth functions, $f_i:W\to\mathbb{E}$, in the sense that the portion of the manifold $M\cap W$ is the intersection of the N-m hypersurfaces, $f_i^{-1}(0)$, (the zero-level sets of the f_i) and that this intersection is "clean", which means that the linear forms $(df_1)_p,\ldots,(df_{N-m})_p$ are linearly independent.

Submanifolds embedded in R^N

Example 4.4.

The sphere

$$S^n = \{x \in \mathbb{E}^{n+1} \mid ||x||_2^2 - 1 = 0\}$$

is an n-dimensional manifold in \mathbb{E}^{n+1} . Indeed, the map $f: \mathbb{E}^{n+1} - \{0\} \to \mathbb{E}$ given by

$$f(x) = ||x||_2^2 - 1$$

is a submersion, since

$$(df)_x(y) = \begin{pmatrix} 2x_1 & 2x_2 & \cdots & 2x_{n+1} \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n+1} \end{pmatrix}, \quad \text{for all } x, y \in (\mathbb{E}^{n+1} - \{0\}).$$

Submanifolds embedded in R^N

Using condition (3) of Theorem 4.7, namely,

(3) For every $p \in M$, there is some open subset, $W \subseteq \mathbb{E}^N$, with $p \in W$ and a smooth submersion, $f: W \to \mathbb{E}^{N-m}$, so that $W \cap M = f^{-1}(0)$,

with

$$M = S^n$$
 and $W = \mathbb{E}^{n+1} - \{0\}$,

we get $W \cap M = S^n = f^{-1}(0)$. So, by Theorem 4.7., S^n is indeed an n-manifold in \mathbb{E}^{n+1} .

Submanifolds embedded in R^N

Example 4.5.

Recall that the orthogonal group, O(n), is the group of all real $n \times n$ matrices, R, such that

$$RR^{\mathrm{T}} = R^{\mathrm{T}}R = I$$

and

$$\det(R)=\pm 1\,,$$

and that the rotation group, SO(n) is the subgroup of O(n) consisting of all matrices in O(n) such that

$$\det(R) = +1$$
.

The group SO(n) is an $\left(\frac{n\cdot(n-1)}{2}\right)$ -dimensional manifold in \mathbb{R}^{n^2} .

Submanifolds embedded in R^N

To see why, recall that

$$GL^+(n) = \{ A \in GL(n) \mid \det(A) > 0 \}$$

is an open set of \mathbb{R}^{n^2} . Now, note that $A^TA - I$ is a symmetric matrix, for all $A \in GL^+(n)$.

So, let

$$f: \mathbf{GL}^+(n) \to \mathbf{S}(n)$$

be given by

$$f(A) = A^{\mathrm{T}}A - I,$$

where $S(n) \approx \mathbb{R}^{\frac{n(n+1)}{2}}$ is the vector space consisting of all $n \times n$ real symmetric matrices.

Submanifolds embedded in R^N

It is easy to show (using directional derivatives) that

$$(df)_A(H) = A^{\mathrm{T}}H + H^{\mathrm{T}}A \in S(n).$$

But then, $(df)_A$ is surjective for all $A \in SO(n)$, because if S is any symmetric matrix, we see that

$$df(A)\left(\frac{AS}{2}\right) = A^{\mathsf{T}}\left(\frac{AS}{2}\right) + \left(\frac{AS}{2}\right)^{\mathsf{T}}A = \frac{1}{2}(A^{\mathsf{T}}AS + S^{\mathsf{T}}A^{\mathsf{T}}A) = \frac{1}{2}(S+S) = S.$$

As $SO(n) = f^{-1}(0)$, we can use condition (3) of Theorem 4.7 again, with $W = GL^+(n)$ and M = SO(n), to conclude that SO(n) is indeed a $\frac{n(n-1)}{2}$ -manifold in \mathbb{R}^{n^2} .