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Quotient Topology

In some cases, the space M does not come with a topology in an obvious (or natural)
way and the following slight variation of Definition 5.3 is more convenient in such a
situation:
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Quotient Topology

Definition 6.1. Given a set, M, given some integer n ≥ 1 and given some k such that
k is either an integer, with k ≥ 1, or k = ∞, a Ck n-atlas (or n-atlas of class Ck),

A = {(Ui, ϕi)}i ,

is a family of charts such that

(1) Each Ui is a subset of M and ϕi : Ui → ϕi(Ui) is a bijection onto an open subset,
ϕi(Ui) ⊆ En, for all i ;

(2) The Ui cover M, i.e.,
M =

�

i
Ui ;

(3) Whenever Ui ∩Uj �= ∅, the sets ϕi(Ui ∩Uj) and ϕj(Ui ∩Uj) are open in Rn

and the transition maps ϕji and ϕij are Ck-diffeomorphism.
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Quotient Topology

Then, the notion of a chart being compatible with an atlas and of two atlases being
compatible is just as before and we get a new definition of a manifold, analogous to
Definition 5.4.

We give M the topology in which the open sets are arbitrary unions of domains of
charts, Ui.

More precisely, the Ui’s of the maximal atlas defining the differentiable structure on
M.

It is not difficult to verify that the axioms of a topology are verified and M is indeed
a topological space with this topology.
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Quotient Topology

It can also be shown that when M is equipped with the above topology, then the
maps

ϕi : Ui → ϕi(Ui)

are homeomorphisms, so M is a manifold according to Definition 5.4.

We also require that under this topology, M is Hausdorff and second-countable. A

sufficient condition (in fact, also necessary!) for being second-countable is that some

atlas be countable.

A sufficient condition of M to be Hausdorff is that for all p, q ∈ M with p �= q, either

p, q ∈ Ui for some Ui or p ∈ Ui and q ∈ Uj for some disjoint Ui, Uj. Thus, we are

back to the original notion of a manifold where it is assumed that M is already a

topological space.
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Quotient Topology

If the underlying topological space of a manifold is compact, then M has some finite
atlas.

Also, if A is some atlas for M and (U, ϕ) is a chart in A, for any (nonempty) open
subset, V ⊆ U, we get a chart, (V, ϕ|V), and it is obvious that this chart is compatible
with A.

Thus, (V, ϕ|V) is also a chart for M.

This observation shows that if U is any open subset of a Ck-manifold, say M, then U
is also a Ck-manifold whose charts are the restrictions of charts on M to U.
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Quotient Topology

Interesting manifolds often occur as the result of a quotient construction.

For example, real projective spaces and Grassmannians are obtained this way.

In this situation, the natural topology on the quotient object is the quotient topology

but, unfortunately, even if the original space is Hausdorff, the quotient topology may

not be.

Therefore, it is useful to have criteria that insure that a quotient topology is Haus-

dorff. We will present two criteria. First, let us review the notion of quotient topol-

ogy.
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Quotient Topology

Definition 6.2. Given any topological space, X, and any set, Y, for any surjective
function, f : X → Y, we define the quotient topology on Y determined by f (also called
the identification topology on Y determined by f ), by requiring a subset, V, of Y to be
open if f−1(V) is an open set in X. Given an equivalence relation R on a topological
space X, if π : X → X/R is the projection sending every x ∈ X to its equivalence
class [x] in X/R, the space X/R equipped with the quotient topology determined by
π is called the quotient space of X modulo R. Thus a set, V, of equivalence classes in
X/R is open iff π−1(V) is open in X, which is equivalent to the fact that

�
[x]∈V [x] is

open in X.

It is immediately verified that Definition 6.2 defines topologies and that f : X →
Y and π : X → X/R are continuous when Y and X/R are given these quotient
topologies.
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Quotient Topology

One should be careful that if X and Y are topological spaces and f : X → Y is a con-

tinuous surjective map, Y does not necessarily have the quotient topology determined

by f .

Indeed, it may not be true that a subset V of Y is open when f−1(V) is open.

However, this will be true in two important cases.



Manifolds

Computational Manifolds and Applications (CMA) - 2011, IMPA, Rio de Janeiro, RJ, Brazil 10

Quotient Topology

Then, Y has the quotient topology induced by the continuous surjective map f if
either f is open or f is closed. Indeed, if f is open, then assuming that f−1(V) is open
in X, we have f ( f−1(V)) = V open in Y. Now, since f−1(Y − B) = X − f−1(B), for
any subset, B, of Y, a subset, V, of Y is open in the quotient topology iff f−1(Y − V)
is closed in X. As a result, if f is a closed map, then V is open in Y iff f−1(V) is open
in X.

Definition 6.3. A continuous map,

f : X → Y ,

is an open map (or simply open) if f (U) is open in Y whenever U is open in X, and
similarly, f : X → Y, is a closed map (or simply closed) if f (V) is closed in Y whenever
V is closed in X.
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Quotient Topology

Unfortunately, the Hausdorff separation property is not necessarily preserved under

quotient.

Nevertheless, it is preserved in some special important cases.

Proposition 6.1. Let X and Y be topological spaces,

f : X → Y

be a continuous surjective map, and assume that X is compact and that Y has the

quotient topology determined by f . Then, the space Y is Hausdorff iff f is a closed

map.
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Quotient Topology

Proposition 6.2. Let

f : X → Y

be a surjective continuous map between topological spaces. If f is an open map then

Y is Hausdorff iff the set

{(x1, x2) ∈ X× X | f (x1) = f (x2)}

is closed in X× X.
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Quotient Topology

Given a topological space, X, and an equivalence relation, R, on X, we say that R is

open if the projection map,

π : X → X/R ,

is an open map, where X/R is equipped with the quotient topology. Then, if R is

an open equivalence relation on X, the topological space X/R is Hausdorff iff R is

closed in X× X.
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Quotient Topology

Proposition 6.3. If X is a topological space and R is an open equivalence relation on
X, then for any basis,

{Bα} ,

for the topology of X, the family
{π(Bα)}

is a basis for the topology of X/R, where

π : X → X/R

is the projection map. Consequently, if the space X is second-countable, then so is
X/R.
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Examples

This is the space of all lines through the origin of Rn+1:

R3

x

y

z

Example 6.1. The projective space RPn
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Examples

To define an atlas on RPn it is convenient to view RPn as the set of equivalence
classes of vectors in Rn+1 − {0} (i.e., the nonzero vectors) modulo the equivalence
relation,

u ∼ v iff v = λu, for some λ �= 0 ∈ R .

Given any p = [x1, . . . , xn+1] ∈ RPn, we call (x1, . . . , xn+1) the homogeneous coordi-
nates of p.

It is customary to write (x1 : · · · : xn+1) instead of [x1, . . . , xn+1].



x
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RP2
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Examples

We define charts in the following way. For any i, with 1 ≤ i ≤ n + 1, let

Ui = {(x1 : · · · : xn+1) ∈ RPn | xi �= 0} .

Out!

U2 = {(x : y : z) ∈ RP2 | y �= 0}U1 = {(x : y : z) ∈ RP2 | x �= 0}

Out!

Out!

U3 = {(x, y, z) ∈ RP2 | z �= 0}
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Examples

Observe that Ui is well defined, because if

(y1 : · · · : yn+1) = (x1 : · · · : xn+1) ,

then there is some λ �= 0 so that yj = λ · xj, for all j = 1, . . . , n + 1.

We can define a homeomorphism, ϕi, of Ui onto Rn, as follows:

ϕi(x1 : · · · : xn+1) =
�

x1
xi

, . . . ,
xi−1

xi
,

xi+1
xi

, . . . ,
xn+1

xi

�
,

where the i-th component is omitted.
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Examples

Again, it is clear that this map is well defined since it only involves ratios.

y

z

x

RP2

R2

Out!

p = (x, y, z)

z = 1 ϕ3(p) = ϕ3(x : y : z) =
� x

z , y
z
�
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Examples

We can also define the maps, ψi, from Rn to Ui ⊆ RPn, given by

ψi(x1, . . . , xn) = (x1 : · · · : xi−1 : 1 : xi : · · · : xn) ,

where the 1 goes in the i-th slot, for i = 1, . . . , n + 1.

We can easily check that ϕi and ψi are mutual inverses, so the ϕi are homeomor-
phisms.
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Examples

On the overlap, Ui ∩Uj, (where i �= j), as xj �= 0, we have

(ϕj ◦ ϕ−1

i )(x1, . . . , xn) =

�
x1

xj
, . . . ,

xi−1

xj
,

1

xj
,

xi
xj

, . . . ,
xj−1

xj
,

xj+1

xj
, . . . ,

xn
xj

�
.

We assumed that i < j; the case j < i is similar.

This is clearly a smooth function from ϕi(Ui ∩Uj) to ϕj(Ui ∩Uj).
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Examples

As the Ui cover RPn, we conclude that the (Ui, ϕi) are n + 1 charts making a smooth
atlas for RPn.

Intuitively, the space RPn is obtained by gluing the open subsets Ui on their over-
laps.

Even for n = 2, this is not easy to visualize!
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Examples

However, we can use the fact that RP2
is homeomorphic to the quotient of S2

by the

equivalence relation where antipodal points are identified. Then, there is a function,

H : R3 → R4
, given by

(x, y, z) �→ (xy, yz, xz, x2 − y2)

from Hilbert and Cohn-Vossen that allows us to concretely realize the projective

plane in R4
as an embedded manifold. It can be shown that when it is restricted

to S2
(in R3

), we haveH(x, y, z) = H(x�, y�, z�) iff (x�, y�, z�) = (x, y, z) or (x�, y�, z�) =
(−x,−y,−z); that is, the inverse image of every point in H(S2) consists of two an-

tipodal points.

The mapH induces an injective map from the quotient space, i.e., RP2, ontoH(S2),
and it is actually a homeomorphism. So, we can conclude that RP2 is a topological
space in R4.
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Examples

We can do even better!

Indeed, the following three maps from R2 to R4,

ψ1(u, v) =
�

uv
u2 + v2 + 1

,
v

u2 + v2 + 1
,

u
u2 + v2 + 1

,
u2 − v2

u2 + v2 + 1

�
,

ψ2(u, v) =
�

u
u2 + v2 + 1

,
v

u2 + v2 + 1
,

uv
u2 + v2 + 1

,
u2 − 1

u2 + v2 + 1

�
,

ψ3(u, v) =
�

u
u2 + v2 + 1

,
uv

u2 + v2 + 1
,

v
u2 + v2 + 1

,
1− u2

u2 + v2 + 1

�
,

are smooth parametrizations that make RP2 a smooth 2-manifold in R4.

This is an example of a surface that cannot be embedded in R3 without self-
intersection.
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Examples

Although "normal" human beings cannot visualize that surface in R4, we can visual-
ize projections of the surface onto R3. We do it by using orthogonal projection along
an axis.

Remarkably, using the above projections, we only get two surfaces: the Steiner Ro-
man and the Cross Cap surfaces. These surfaces were extensively investigated in the
1800’s.
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Examples
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Examples

It is worth mentioning that the same map, H, can be used to realize the Klein Bottle
as a topological space in R4. For this, we must restrictH to the torus (check it if you
like!).

If we project the surfaceH(S2) onto a hyperplane in R4 that is not orthogonal to one
of the axes, we should see some "hybrid" of the Steiner Roman and the Cross Cap
surfaces.

It also worth mentioning that RP3 is homeomorphic to SO(3).
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Examples

The topological space, M1×M2, with the product topology (the opens of M1×M2 are
arbitrary unions of sets of the form U × V, where U is open in M1 and V is open in M2)
can be given the structure of a Ck-manifold of dimension n1 + n2 by defining charts
as follows:

For any two charts, (Ui, ϕi) on M1 and (Vj, ψj) on M2, we declare that the pair

(Ui ×Vj, ϕi × ψj)

is a chart on M1 ×M2, where the map ϕi × ψj : Ui ×Vj → En1+n2 is defined so that
�

ϕi × ψj
�
(p, q) = (ϕi(p), ψj(q)), for all (p, q) ∈ Ui ×Vj.

Example 6.2. Product Manifolds
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Examples

The map (ϕi × ψj) is continuous and bijective. Furthermore, its inverse,

(ϕi × ψj)−1 : En1+n2 → Ui ×Vj ,

where

�
ϕi × ψj

�−1 (p, q) = (ϕ−1
i (p), ψ−1

j (q)), for all (p, q) ∈ M1 ×M2 ,

is also a continuous map, which implies that (ϕi × ψj) is indeed a homeomorphism.



Manifolds

Computational Manifolds and Applications (CMA) - 2011, IMPA, Rio de Janeiro, RJ, Brazil 30

Examples

This is clearly a smooth function from

(ϕi × ψj)
�
(Ui ×Vj) ∩ (Uk ×Vl)

�

to
(ϕk × ψl)

�
(Ui ×Vj) ∩ (Uk ×Vl)

�
.

If (p, q) ∈ (Ui × Vj) ∩ (Uk × Vl), then p ∈ (Ui ∩Uk) and q ∈ (Vj ∩ Vl). So, on the
overlap

(Ui ×Vj) ∩ (Uk ×Vl) ,

we have

(ϕk×ψl) ◦ (ϕi×ψj)−1 = (ϕk×ψl)(ϕ−1
i (p), ψ−1

j (q)) =
�
(ϕk ◦ ϕ−1

i )(p), (ψl ◦ ψ−1
j )(q)

�
.
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Examples

Since the (Ui × Vj) form a cover for the space M1 × M2, we conclude that the�
(Ui ×Vj), (ϕi × ψj)

�
form a smooth atlas for M1 × M2. So, M1 × M2 is a smooth

(n1 + n2)-manifold.
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Examples

Example 6.3. Configuration spaces

Interesting classes of manifolds arise in motion planning for mobile robots.

The goal is to place several robots in motion, at the same time, in a such a way that
collision is avoided. To model such a system, we assume that the location of each
robot is a point in some topological space, X; for instance, the circle (i.e., S1), R2, or
R3.
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Examples

The configuration space of n distinct points on X, denoted by Conf n(X), is the space

Conf n(X) =

�
n

∏
1

X

�
− ∆ ,

where
∆ = {(x1, . . . , xn) | xi = xj for some i �= j} .

The set ∆, pairwise diagonal, represents those configurations of n points in X which
experience a collision — this is the set of illegal configurations for the robots.



Manifolds

Computational Manifolds and Applications (CMA) - 2011, IMPA, Rio de Janeiro, RJ, Brazil 34

Examples

The unlabeled configuration space, denoted by UConf n(X), is defined to be the quotient
of Conf n(X) by the equivalence relation defined such that two tuples are equivalent
iff one tuple is a permutation of the other. This space is given the quotient topology.

Configuration spaces of points on a manifold M are all (non-compact) manifolds of
dimension dim(Conf n(X)) = n · dim(M). The space Conf n(S1) is homeomorphic to
(n− 1)! distinct copies of S1 ×Rn−1, while UConf n(S1) is a connected space.

It can also be shown that the configuration space of two points in R2, Conf n(R2), is
homeomorphic to R3 × S1.

Configuration spaces and their applications to robot motion planning have been
studied by Robert Ghrist (UPenn) and others.


