

Introduction to Computational Manifolds and Applications

Part 1 - Foundations

Prof. Jean Gallier

jean@cis.upenn.edu

Department of Computer and Information Science University of Pennsylvania Philadelphia, PA, USA

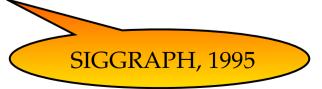
Sets of Gluing Data

Our definition of manifold is **not** constructive: it states what a manifold is by assuming that the space already exists. What if we are interested in "constructing" a manifold?

It turns out that a manifold can be built from what we call a set of gluing data.

The idea is to glue open sets in \mathbb{E}^n in a controlled manner, and then embed them in \mathbb{E}^d .

André Weil introduced this gluing process to define abstract algebraic varieties from irreducible affine sets in a book published in 1946. However, as far as we know, Cindy Grimm and John Hughes were the first to give a constructive definition of manifold.



Sets of Gluing Data

The pioneering work of Grimm and Hughes allows us to create smooth 2-manifolds (i.e., *smooth surfaces* equipped with an atlas) in \mathbb{E}^3 for the purposes of modeling and simulation.

In this lecture we will introduce a formal definition of sets of gluing data, which fixes a problem in the definition given by Grimm and Hughes, and includes a Hausdorff condition.

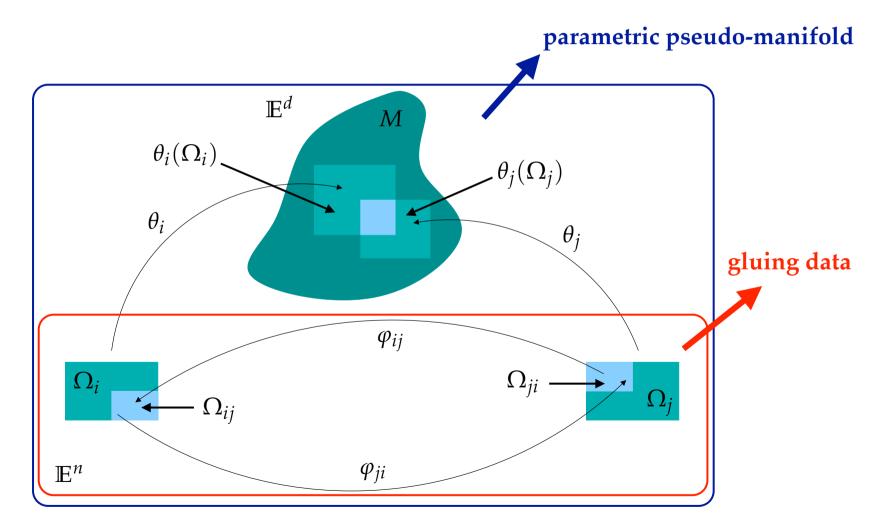
We also introduce the notion of parametric pseudo-manifolds.

A parametric pseudo-manifold (PPM) is a topological space defined from a set of gluing data.

Under certain conditions (which are often met in practice), PPM's are manifolds in \mathbb{E}^{m} .

З

Sets of Gluing Data



Sets of Gluing Data

Let *I* and *K* be (possibly infinite) countable sets such that *I* is nonempty.

Definition 7.1. Let *n* be an integer, with $n \ge 1$, and *k* be either an integer, with $k \ge 1$, or $k = \infty$. A *set of gluing data* is a triple,

$$\mathcal{G} = \left((\Omega_i)_{i \in I}, (\Omega_{ij})_{(i,j) \in I \times I}, (\varphi_{ji})_{(i,j) \in K} \right),$$

satisfying the following properties:

Sets of Gluing Data

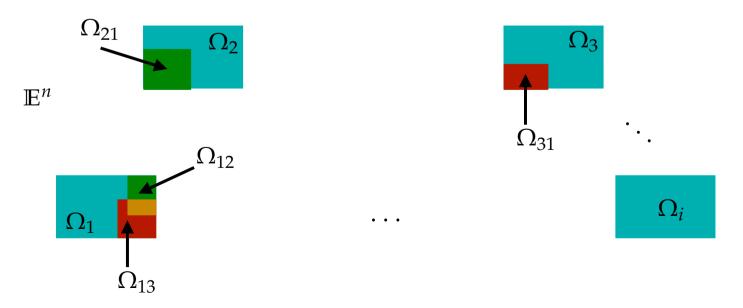
 For every *i* ∈ *I*, the set Ω_i is a nonempty open subset of Eⁿ called *parametrization domain*, for short, *p*-*domain*, and any two distinct *p*-domains are pairwise disjoint, i.e.,

 $\Omega_i\cap\Omega_j=arnothing$,

for all $i \neq j$.

Sets of Gluing Data

(2) For every pair $(i, j) \in I \times I$, the set Ω_{ij} is an open subset of Ω_i . Furthermore, $\Omega_{ii} = \Omega_i$ and $\Omega_{ji} \neq \emptyset$ if and only if $\Omega_{ij} \neq \emptyset$. Each nonempty subset Ω_{ij} (with $i \neq j$) is called a *gluing domain*.

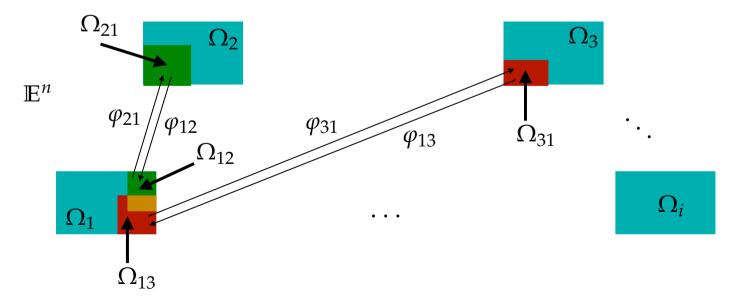


Sets of Gluing Data

(3) If we let

 $K = \{(i,j) \in I \times I \mid \Omega_{ij} \neq \emptyset\},\$

then $\varphi_{ji} \colon \Omega_{ij} \to \Omega_{ji}$ is a C^k bijection for every $(i, j) \in K$ called a *transition* (or *gluing*) map.



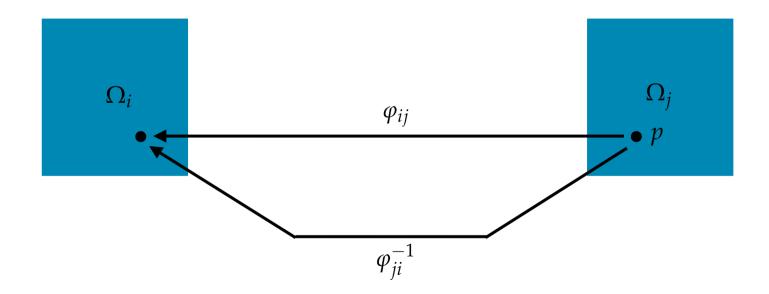
Sets of Gluing Data

The transition functions must satisfy the following three conditions:

(a) $\varphi_{ii} = \operatorname{id}_{\Omega_i}$, for all $i \in I$,

Sets of Gluing Data

(b) $\varphi_{ij} = \varphi_{ji}^{-1}$, for all $(i, j) \in K$, and



Sets of Gluing Data

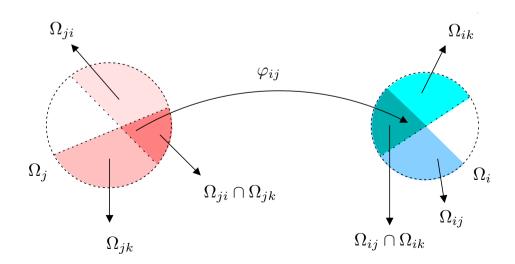
(c) For all *i*, *j*, *k*, if

 $\Omega_{ji}\cap\Omega_{jk}
eq \emptyset$,

then

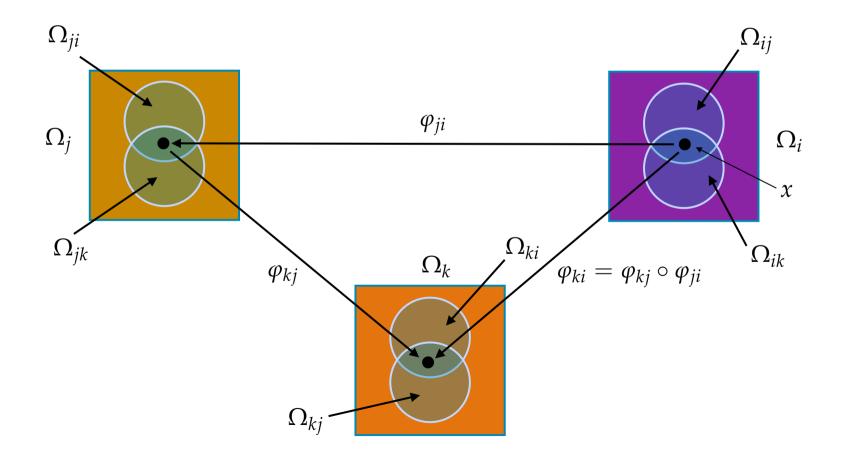
$$\varphi_{ij}(\Omega_{ji}\cap\Omega_{jk})=\Omega_{ij}\cap\Omega_{ik}$$
 and $\varphi_{ki}(x)=\varphi_{kj}\circ\varphi_{ji}(x)$

for all $x \in \Omega_{ij} \cap \Omega_{ik}$.



Sets of Gluing Data

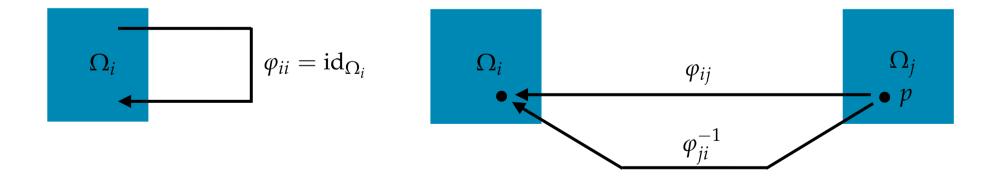
 $\varphi_{ki}(x) = (\varphi_{kj} \circ \varphi_{ji})(x), \text{ for all } x \in (\Omega_{ij} \cap \Omega_{ik}).$



Sets of Gluing Data

The cocycle condition implies conditions (a) and (b):

- (a) $\varphi_{ii} = id_{\Omega_i}$, for all $i \in I$, and
- (b) $\varphi_{ij} = \varphi_{ji}^{-1}$, for all $(i, j) \in K$.

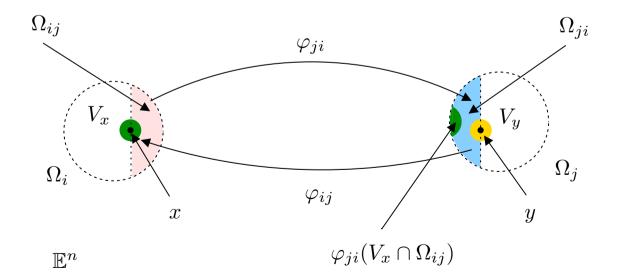


Sets of Gluing Data

(4) For every pair $(i, j) \in K$, with $i \neq j$, for every

 $x \in \partial(\Omega_{ij}) \cap \Omega_i$ and $y \in \partial(\Omega_{ji}) \cap \Omega_j$,

there are open balls, V_x and V_y , centered at x and y, so that no point of $V_y \cap \Omega_{ji}$ is the image of any point of $V_x \cap \Omega_{ij}$ by φ_{ji} .



Sets of Gluing Data

Given a set of gluing data, G, can we build a manifold from it?

The answer is YES!

Indeed, such a manifold is built by a quotient construction.

Sets of Gluing Data

The idea is to form the disjoint union, $\prod_{i \in I} \Omega_i$, of the Ω_i and then identify Ω_{ij} with Ω_{ji} using φ_{ji} .

Formally, we define a binary relation, \sim , on $\coprod_{i \in I} \Omega_i$ as follows: for all $x, y \in \coprod_{i \in I} \Omega_i$, we have

$$x \sim y$$
 iff $(\exists (i,j) \in K) (x \in \Omega_{ij}, y \in \Omega_{ji}, y = \varphi_{ji}(x)).$

We can prove that \sim is an equivalence relation, which enables us to define the space

$$M_{\mathcal{G}} = \left(\prod_{i \in I} \Omega_i \right) / \sim \,.$$

We can also prove that $M_{\mathcal{G}}$ is a Hausdorff and second-countable manifold.

Sets of Gluing Data

Sketching the proof:

For every $i \in I$, $\operatorname{in}_i : \Omega_i \to \coprod_{i \in I} \Omega_i$ is the *natural injection*.

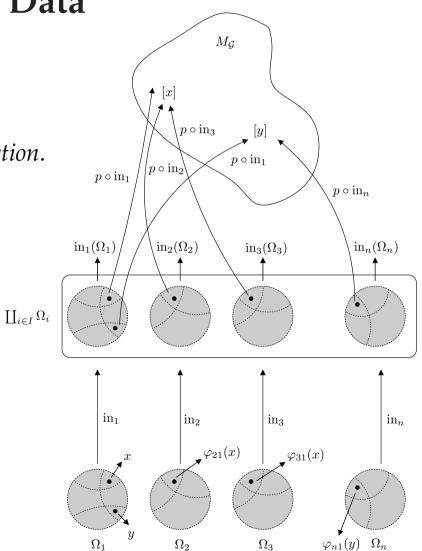
Let $p: \coprod_{i \in I} \Omega_i \to M_{\mathcal{G}}$ be the *quotient map*, with

$$p(x) = [x]$$

For every $i \in I$, let $\tau_i = p \circ in_i \colon \Omega_i \to M_{\mathcal{G}}$.

Let $U_i = \tau_i(\Omega_i)$ and $\varphi_i = \tau_i^{-1}$.

It is immediately verified that (U_i, φ_i) are charts and that this collection of charts forms a C^k atlas for M_G .



Sets of Gluing Data

Sketching the proof:

We now prove that the topology of $M_{\mathcal{G}}$ is Hausdorff.

Pick $[x], [y] \in M_{\mathcal{G}}$ with $[x] \neq [y]$, for some $x \in \Omega_i$ and some $y \in \Omega_j$.

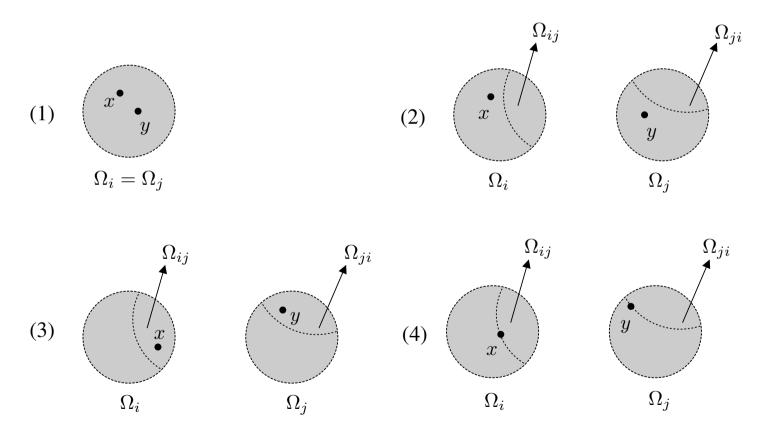
Either

$$\tau_i(\Omega_i) \cap \tau_j(\Omega_j) = \emptyset$$
 or $\tau_i(\Omega_i) \cap \tau_j(\Omega_j) \neq \emptyset$.

In the former case, as τ_i and τ_j are homeomorphisms, [x] and [y] belong to the two disjoint open sets $\tau_i(\Omega_i)$ and $\tau_j(\Omega_j)$. In the latter case, we must consider four subcases:

Sets of Gluing Data

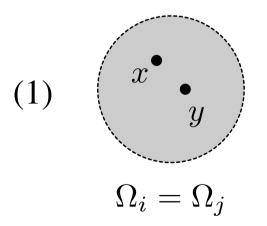
Sketching the proof:



Sets of Gluing Data

Sketching the proof:

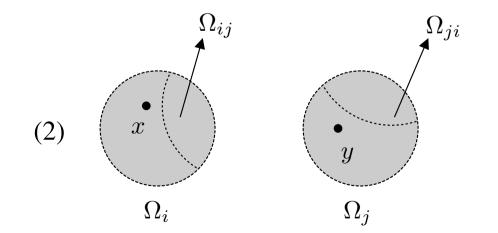
(1) If i = j then x and y can be separated by disjoint opens, V_x and V_y , and as τ_i is a homeomorphism, [x] and [y] are separated by the disjoint open subsets $\tau_i(V_x)$ and $\tau_j(V_y)$.



Sets of Gluing Data

Sketching the proof:

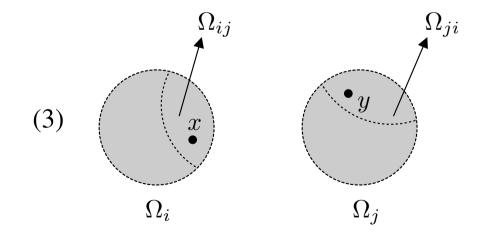
(2) If $i \neq j, x \in \Omega_i - \overline{\Omega_{ij}}$ and $y \in \Omega_j - \overline{\Omega_{ji}}$, then $\tau_i(\Omega_i - \overline{\Omega_{ij}})$ and $\tau_j(\Omega_j - \overline{\Omega_{ji}})$ are disjoint open subsets separating [x] and [y], where $\overline{\Omega_{ij}}$ and $\overline{\Omega_{ji}}$ are the closures of Ω_{ij} and Ω_{ji} , respectively.



Sets of Gluing Data

Sketching the proof:

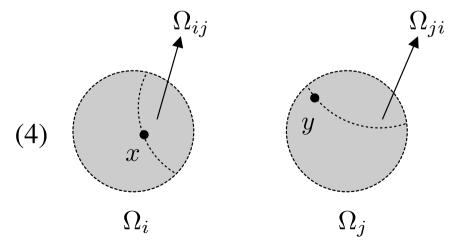
(3) If $i \neq j$, $x \in \Omega_{ij}$ and $y \in \Omega_{ji}$, as $[x] \neq [y]$ and $y \sim \varphi_{ij}(y)$, then $x \neq \varphi_{ij}(y)$. We can separate x and $\varphi_{ij}(y)$ by disjoint open subsets, V_x and V_y , and [x] and $[y] = [\varphi_{ij}(y)]$ are separated by the disjoint open subsets $\tau_i(V_x)$ and $\tau_i(V_y)$.



Sets of Gluing Data

Sketching the proof:

(4) If $i \neq j$, $x \in \partial(\Omega_{ij}) \cap \Omega_i$ and $y \in \partial(\Omega_{ji}) \cap \Omega_j$, then we use condition 4 of Definition 7.1. This condition yields two disjoint open subsets, V_x and V_y , with $x \in V_x$ and $y \in V_y$, such that no point of $V_x \cap \Omega_{ij}$ is equivalent to any point of $V_y \cap \Omega_{ji}$, and so $\tau_i(V_x)$ and $\tau_j(V_y)$ are disjoint open subsets separating [x] and [y].



Sets of Gluing Data

Sketching the proof:

So, the topology of $M_{\mathcal{G}}$ is Hausdorff and $M_{\mathcal{G}}$ is indeed a manifold.

 $M_{\mathcal{G}}$ is also second-countable (WHY?).

Finally, it is trivial to verify that the transition maps of $M_{\mathcal{G}}$ are the original gluing functions,

 $arphi_{ij}$,

since

$$\varphi_i = \tau_i^{-1}$$
 and $\varphi_{ji} = \varphi_j \circ \varphi_i^{-1}$.

Sets of Gluing Data

Theorem 7.1. For every set of gluing data,

 $\mathcal{G} = \left((\Omega_i)_{i \in I}, (\Omega_{ij})_{(i,j) \in I \times I}, (\varphi_{ji})_{(i,j) \in K} \right)$,

there is an *n*-dimensional C^k manifold, M_G , whose transition maps are the φ_{ji} 's.

Theorem 7.1 is nice, but...

- Our proof is not constructive;
- $M_{\mathcal{G}}$ is an *abstract* entity, which may not be orientable, compact, etc.

So, we know we *can* build a manifold from a set of gluing data, but that does not mean we know *how* to build a "concrete" manifold. For that, we need a formal notion of "concreteness".

Parametric Pseudo-Manifolds

The notion of "concreteness" is realized as *parametric pseudo-manifolds*:

Definition 7.2. Let *n*, *d*, and *k* be three integers with $d > n \ge 1$ and $k \ge 1$ or $k = \infty$. A *parametric* C^k *pseudo-manifold of dimension n in* \mathbb{E}^d (for short, *parametric pseudo-manifold* or PPM) is a pair,

$$\mathcal{M} = (\mathcal{G}, (\theta_i)_{i \in I}),$$

such that

$$\mathcal{G} = \left((\Omega_i)_{i \in I}, (\Omega_{ij})_{(i,j) \in I \times I}, (\varphi_{ji})_{(i,j) \in K} \right)$$

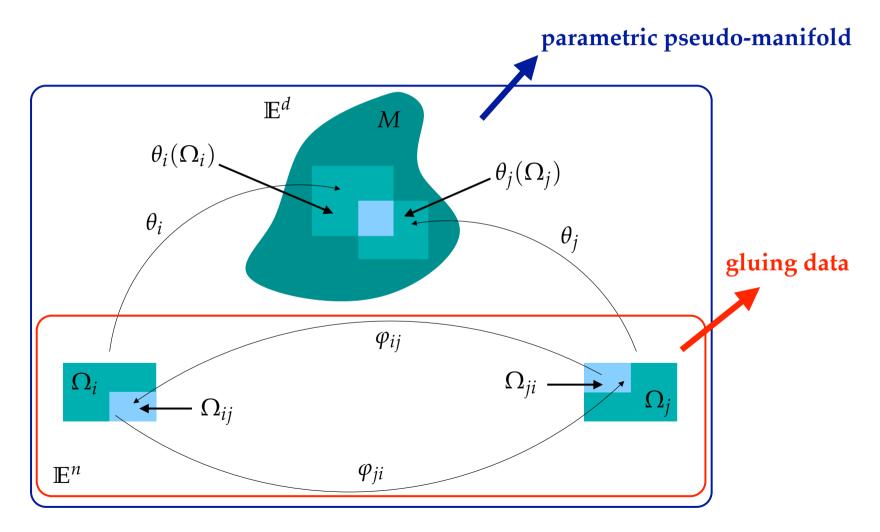
is a set of gluing data, for some finite set *I*, and each $\theta_i \colon \Omega_i \to \mathbb{E}^d$ is C^k and satisfies

(C) For all $(i, j) \in K$, we have

$$\theta_i = \theta_j \circ \varphi_{ji}.$$

Manifolds

Parametric Pseudo-Manifolds



Parametric Pseudo-Manifolds

As usual, we call θ_i a *parametrization*.

The subset, $M \subset \mathbb{E}^d$, given by

$$M = \bigcup_{i \in I} \theta_i(\Omega_i)$$

is called the *image* of the parametric pseudo-manifold, \mathcal{M} .

Whenever n = 2 and d = 3, we say that M is a *parametric pseudo-surface* (or PPS, for short).

We also say that *M*, the image of the PPS \mathcal{M} , is a *pseudo-surface*.

Parametric Pseudo-Manifolds

Condition C of Definition 7.2,

(*C*) For all $(i, j) \in K$, we have

 $heta_i= heta_j\circ arphi_{ji}$,

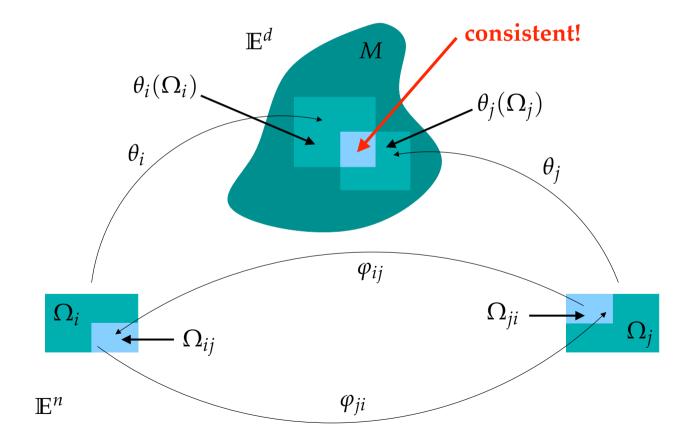
obviously implies that

$$heta_i(\Omega_{ij})= heta_j(\Omega_{ji})$$
 ,

for all $(i, j) \in K$. Consequently, θ_i and θ_j are consistent parametrizations of the overlap

$$heta_i(\Omega_{ij}) = heta_j(\Omega_{ji}) \,.$$

Parametric Pseudo-Manifolds



Parametric Pseudo-Manifolds

Thus, the set *M*, whatever it is, is covered by pieces, $U_i = \theta_i(\Omega_i)$, not necessarily open.

Each U_i is parametrized by θ_i , and each overlapping piece, $U_i \cap U_j$, is parametrized consistently.

The local structure of *M* is given by the θ_i 's and its global structure is given by the gluing data.

Parametric Pseudo-Manifolds

We can equip *M* with an atlas if we require the θ_i 's to be injective and to satisfy

(C') For all $(i, j) \in K$,

$$\theta_i(\Omega_i) \cap \theta_j(\Omega_j) = \theta_i(\Omega_{ij}) = \theta_j(\Omega_{ji}).$$

(C") For all $(i, j) \notin K$,

 $\theta_i(\Omega_i) \cap \theta_j(\Omega_j) = \emptyset.$

Even if the θ_i 's are not injective, properties C' and C" are still desirable since they ensure that $\theta_i(\Omega_i - \Omega_{ij})$ and $\theta_j(\Omega_j - \Omega_{ji})$ are uniquely parametrized. Unfortunately, properties C' and C" may be difficult to enforce in practice (at least for surface constructions).

Parametric Pseudo-Manifolds

Interestingly, regardless whether conditions C' and C'' are satisfied, we can still show that *M* is the image in \mathbb{E}^d of the abstract manifold, M_G , as stated by Proposition 7.2:

Proposition 7.2. Let $\mathcal{M} = (\mathcal{G}, (\theta_i)_{i \in I})$ be a parametric C^k pseudo-manifold of dimension n in \mathbb{E}^d , where $\mathcal{G} = ((\Omega_i)_{i \in I}, (\Omega_{ij})_{(i,j) \in I \times I}, (\varphi_{ji})_{(i,j) \in K})$ is a set of gluing data, for some finite set I. Then, the parametrization maps, θ_i , induce a surjective map, $\Theta: M_{\mathcal{G}} \to M$, from the abstract manifold, $M_{\mathcal{G}}$, specified by \mathcal{G} to the image, $M \subseteq \mathbb{E}^d$, of the parametric pseudo-manifold, \mathcal{M} , and the following property holds:

$$heta_i = \Theta \circ au_i$$
 ,

for every Ω_i , where $\tau_i \colon \Omega_i \to M_{\mathcal{G}}$ are the parametrization maps of the manifold $M_{\mathcal{G}}$. In particular, every manifold, $M \subset \mathbb{E}^d$, such that M is induced by \mathcal{G} is the image of $M_{\mathcal{G}}$ by a map

$$\Theta\colon M_{\mathcal{G}}\to M$$
.

The "Evil" Cocycle Condition

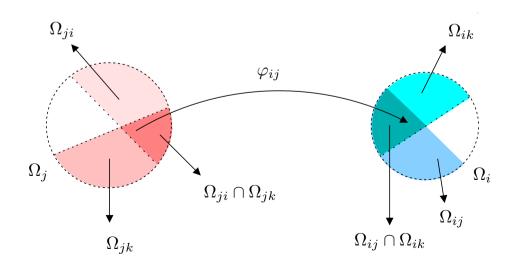
(c) For all *i*, *j*, *k*, if

 $\Omega_{ji}\cap\Omega_{jk}
eq \emptyset$,

then

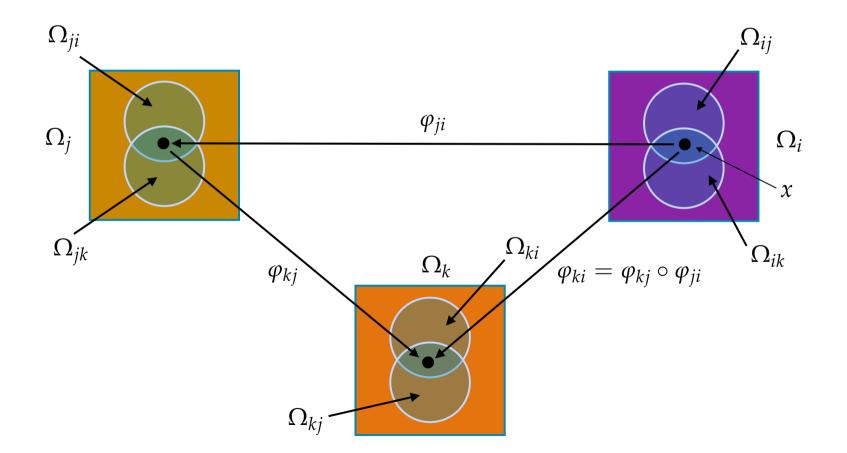
$$\varphi_{ij}(\Omega_{ji}\cap\Omega_{jk})=\Omega_{ij}\cap\Omega_{ik}$$
 and $\varphi_{ki}(x)=\varphi_{kj}\circ\varphi_{ji}(x)$,

for all $x \in \Omega_{ij} \cap \Omega_{ik}$.



The "Evil" Cocycle Condition

 $\varphi_{ki}(x) = (\varphi_{kj} \circ \varphi_{ji})(x), \text{ for all } x \in (\Omega_{ij} \cap \Omega_{ik}).$

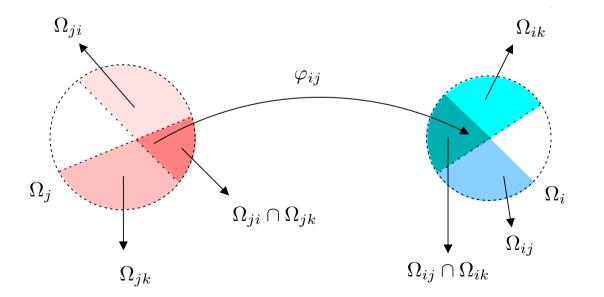


The "Evil" Cocycle Condition

The statement

if
$$\Omega_{ji} \cap \Omega_{jk} \neq \emptyset$$
 then $\varphi_{ij}(\Omega_{ji} \cap \Omega_{jk}) = \Omega_{ij} \cap \Omega_{ik}$

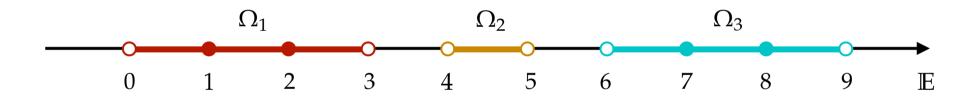
is necessary for guaranteeing the transitivity of the equivalence relation \sim .



The "Evil" Cocycle Condition

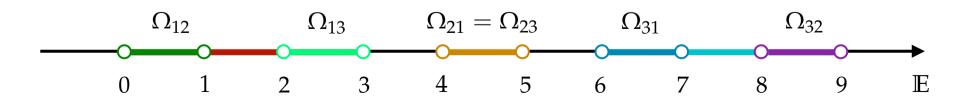
Consider the *p*-domains (i.e., open line intervals)

$$\Omega_1 =]0,3[, \Omega_2 =]4,5[, and \Omega_3 =]6,9[.$$



Consider the gluing domains

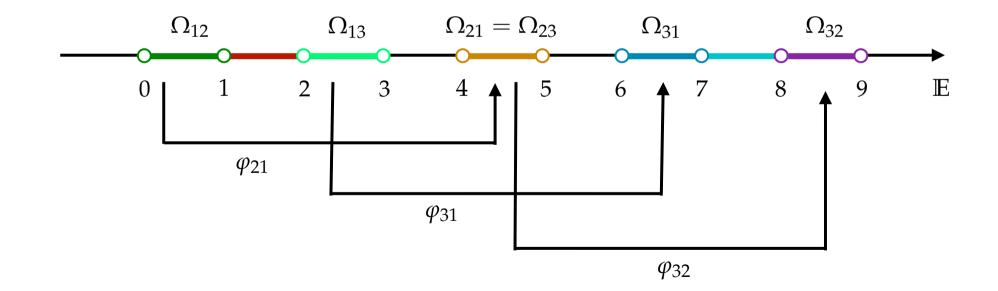
 $\Omega_{12} =] \, 0,1 \, [\quad \Omega_{13} =] \, 2,3 \, [\, , \quad \Omega_{21} = \Omega_{23} =] \, 4,5 \, [\, , \quad \Omega_{32} =] \, 8,9 \, [\quad \Omega_{31} =] \, 6,7 \, [\, .$



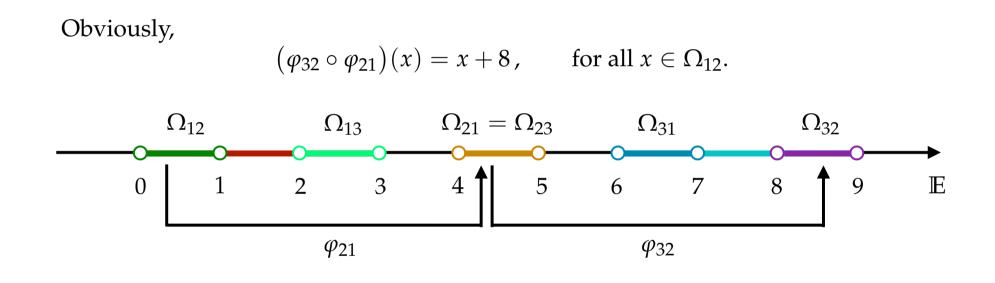
The "Evil" Cocycle Condition

Consider the transition maps:

$$\varphi_{21}(x) = x + 4$$
, $\varphi_{32}(x) = x + 4$ and $\varphi_{31}(x) = x + 4$.



The "Evil" Cocycle Condition

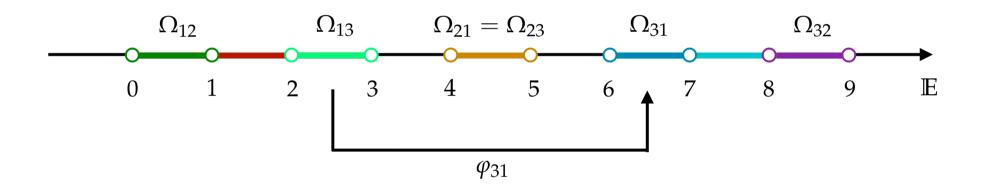


 $\varphi_{21}(0.5) = 4.5$ and $\varphi_{32}(4.5) = 8.5 \implies 0.5 \sim 4.5$ and $4.5 \sim 8.5$

So, if \sim were transitive, then we would have 0.5 \sim 8.5. But...

The "Evil" Cocycle Condition

it turns out that φ_{31} is undefined at 0.5.



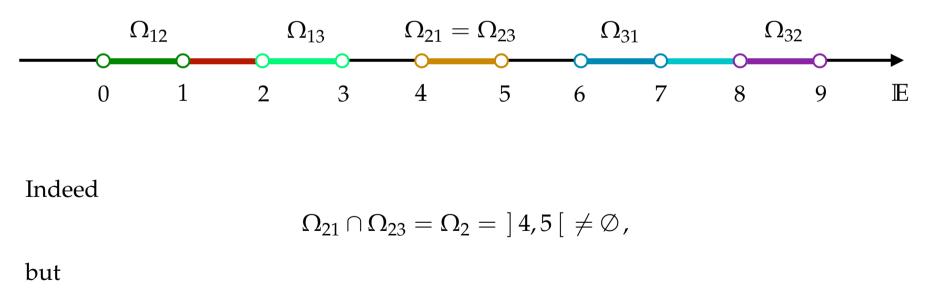
So, 0.5 $\not\sim$ 8.5.

The reason is that φ_{31} and $\varphi_{32} \circ \varphi_{21}$ have disjoint domains.

The "Evil" Cocycle Condition

The reason they have disjoint domains is that condition "c" is not satisfied:

if $\Omega_{21} \cap \Omega_{23} \neq \emptyset$ then $\varphi_{12}(\Omega_{21} \cap \Omega_{23}) = \Omega_{12} \cap \Omega_{13}$.



$$\varphi_{12}(\Omega_{21} \cap \Omega_{23}) =]0,1[\neq \emptyset = \Omega_{12} \cap \Omega_{13}.$$