Introduction to Computational Manifolds and Applications

Part 1 - Constructions

Prof. Marcelo Ferreira Siqueira
mfsiqueira@dimap.ufrn.br

Departmento de Informática e Matemática Aplicada Universidade Federal do Rio Grande do Norte Natal, RN, Brazil

Parametric Pseudo-Manifolds

Simplicial Surfaces

We will start investigating the construction of 2-dimensional PPM's in \mathbb{E}^{3}.

In the previous lecture, we considered a polygon as a sketch of the shape of the curve we wanted to build. Now, we need another object to play the same role the polygon did.

We can think of a few choices, but the easiest one is arguably a polygonal mesh.

So, let us start with a triangle mesh, which is a formally known as a simplicial surface.

Parametric Pseudo-Manifolds

Simplicial Surfaces

Definition 9.1. Given a finite family, $\left(a_{i}\right)_{i \in I}$, of points in \mathbb{E}^{n}, we say that $\left(a_{i}\right)_{i \in I}$ is affinely independent if the family of vectors, $\left(\boldsymbol{a}_{i} \boldsymbol{a}_{j}\right)_{j \in(I-\{i\})}$, is linearly independent for some $i \in I$.

Parametric Pseudo-Manifolds

Simplicial Surfaces

Definition 9.2. Let a_{0}, \ldots, a_{d} be any $d+1$ affinely independent points in \mathbb{E}^{n}, where d is a non-negative integer. The simplex σ spanned by the points a_{0}, \ldots, a_{d} is the convex hull of these points, and is denoted by $\left[a_{0}, \ldots, a_{d}\right]$. The points a_{0}, \ldots, a_{d} are the vertices of σ. The dimension, $\operatorname{dim}(\sigma)$, of the simplex σ is d, and σ is also called a d-simplex.

In \mathbb{E}^{n}, the largest number of affinely independent points is $n+1$.

So, in \mathbb{E}^{n}, we have simplices of dimension $0,1, \ldots, n$. A 0 -simplex is a point, a 1 simplex is a line segment, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron. Furthermore, the convex hull of any nonempty subset of vertices of a simplex is a simplex.

Parametric Pseudo-Manifolds

Simplicial Surfaces

Definition 9.3. Let $\sigma=\left[a_{0}, \ldots, a_{d}\right]$ be a d-simplex in \mathbb{E}^{n}. A face of σ is a simplex spanned by a nonempty subset of $\left\{a_{0}, \ldots, a_{d}\right\}$; if this subset is proper then the face is called a proper face. A face of σ whose dimension is k, i.e., a k-simplex, is called a k-face.

a 2-face: $\left[a_{0}, a_{1}, a_{2}\right]$

3 proper 1-faces: $\left[a_{0}, a_{1}\right],\left[a_{0}, a_{2}\right],\left[a_{1}, a_{2}\right] 3$ proper 0 -faces: $\left[a_{0}\right],\left[a_{1}\right],\left[a_{2}\right]$

Parametric Pseudo-Manifolds

Simplicial Surfaces

Definition 9.4. A simplicial complex \mathcal{K} in \mathbb{E}^{n} is a finite collection of simplices in \mathbb{E}^{n} such that
(1) if a simplex is in \mathcal{K}, then all its faces are in \mathcal{K};
(2) if $\sigma, \tau \in \mathcal{K}$ are simplices such that $\sigma \cap \tau \neq \varnothing$, then $\sigma \cap \tau$ is a face of both σ and τ.

violates (1)

violates (2)

a simplicial complex

Parametric Pseudo-Manifolds

Simplicial Surfaces

Definition 9.5. The dimension, $\operatorname{dim}(\mathcal{K})$, of a simplicial complex, \mathcal{K}, is the largest dimension of a simplex in \mathcal{K}, i.e., $\operatorname{dim}(\mathcal{K})=\max \{\operatorname{dim}(\sigma) \mid \sigma \in \mathcal{K}\}$. We refer to a d-dimensional simplicial complex as simply a d-complex. The set consisting of the union of all points in the simplices of \mathcal{K} is called the underlying space of \mathcal{K}, and it is denoted by $|\mathcal{K}|$. The underlying space, $|\mathcal{K}|$, of \mathcal{K} is also called the geometric realization of \mathcal{K}.

a 2-complex

Parametric Pseudo-Manifolds

Simplicial Surfaces

A simplicial complex is a combinatorial object (i.e., a finite collection of simplices).

The underlying space of a simplicial complex is a topological object, a subset of some \mathbb{E}^{n}.

a 2-complex

Parametric Pseudo-Manifolds

Simplicial Surfaces

Definition 9.6. Let \mathcal{K} be a simplicial complex in \mathbb{E}^{n}. Then, for any simplex σ in \mathcal{K}, we define two other complexes, the $\operatorname{star}, \operatorname{st}(\sigma, \mathcal{K})$, and the $\operatorname{link}, \operatorname{lk}(\sigma, \mathcal{K})$, of σ in \mathcal{K}, as follows:

$$
\operatorname{st}(\sigma, \mathcal{K})=\{\tau \in \mathcal{K} \mid \exists \eta \text { in } \mathcal{K} \text { such that } \sigma \text { is a face of } \eta \text { and } \tau \text { is a face of } \eta\}
$$

and

$$
\operatorname{lk}(\sigma, \mathcal{K})=\{\tau \in \mathcal{K} \mid \tau \text { is in } s t(\sigma, \mathcal{K}) \text { and } \tau \text { and } \sigma \text { have no face in common }\} .
$$

Parametric Pseudo-Manifolds

Simplicial Surfaces

Definition 9.7. A 2-complex \mathcal{K} in \mathbb{E}^{n} is called a simplicial surface without boundary if every 1 -simplex of \mathcal{K} is the face of precisely two simplices of \mathcal{K}, and the underlying space of the link of each 0 -simplex of \mathcal{K} is homeomorphic to the unit circle, $S^{1}=$ $\left\{x \in \mathbb{E}^{2} \mid\|x\|=1\right\}$.

The set consisting of the $0-1-$, and 2 -faces of a 3 -simplex is a simplicial surface without boundary.

Parametric Pseudo-Manifolds

Simplicial Surfaces

The simplicial complex consisting of the proper faces of two 3 -simplices (i.e., two tetrahedra) sharing a common vertex is not a simplicial surface without boundary as the link of the common vertex of the two 3 -simplices is not homeomorphic to the unit circle, S^{1}.

Parametric Pseudo-Manifolds

Simplicial Surfaces

From now on, we will refer to a simplicial surface without boundary as simply a simplicial surface. The underlying space of a simplicial surface is called its underlying surface.

The underlying surface of a simplicial surface is a topological 2-manifold in \mathbb{E}^{n}.

Parametric Pseudo-Manifolds

Simplicial Surfaces

Definition 9.8. Let \mathcal{K} be a simplicial complex in \mathbb{E}^{n}. For each integer i, with $0 \leq i \leq$ $\operatorname{dim}(\mathcal{K})$, we define $\mathcal{K}^{(i)}$ as the simplicial complex consisting of all j-simplices of \mathcal{K}, for every j such that $0 \leq j \leq i$. Moreover, if \mathcal{L} is a simplicial complex in \mathbb{E}^{m}, then a map

$$
f: \mathcal{K}^{(0)} \rightarrow \mathcal{L}^{(0)}
$$

is called a simplicial map if whenever $\left[a_{0}, \ldots, a_{d}\right]$ is a simplex in \mathcal{K}, then $\left[f\left(a_{0}\right), \ldots, f\left(a_{d}\right)\right]$ is a simplex in \mathcal{L}. A simplicial map is a simplicial isomorphism if it is a bijective map, and if its inverse is also a simplicial map. Finally, if there exists a simplicial isomorphism from \mathcal{K} to \mathcal{L}, then we say that \mathcal{K} and \mathcal{L} are simplicially isomorphic.

Parametric Pseudo-Manifolds

Simplicial Surfaces

\mathcal{K} and \mathcal{L} are simplicially isomorphic.

Parametric Pseudo-Manifolds

Simplicial Surfaces

Let

$$
f: \mathcal{K}^{(0)} \rightarrow \mathcal{L}^{(0)}
$$

be given by

$$
f\left(a_{0}\right)=b_{5}, \quad f\left(a_{1}\right)=b_{3}, \quad f\left(a_{2}\right)=b_{2}, \quad f\left(a_{3}\right)=b_{1}, \quad f\left(a_{4}\right)=b_{0}, \quad f\left(a_{5}\right)=b_{4} .
$$

Parametric Pseudo-Manifolds

Simplicial Surfaces

It is easily verified that f is a simplicial isomorphism.

Parametric Pseudo-Manifolds

Gluing Data

Given a simplicial surface, \mathcal{K}, in \mathbb{E}^{3}, we are interested in building a parametric pseudo-surface, \mathcal{M}, in \mathbb{E}^{3} such that the image, M, of \mathcal{M} is homeomorphic to the underlying surface, $|\mathcal{K}|$, of \mathcal{K}, and such that M also approximates the geometry of $|\mathcal{K}|$.

Parametric Pseudo-Manifolds

Gluing Data

As we did before, let us first focus on the definition of a set of gluing data.

Unfortunately, this task is not as easy as it was in the one-dimensional case.

The key is to notice that the simplicial surface, \mathcal{K}, which is a combinatorial object, explicitly defines a topological structure on $|\mathcal{K}|$ (via the adjacency relations of all simplices).

So, we should define p-domains, gluing domains, and transition functions based on \mathcal{K}.

Parametric Pseudo-Manifolds

Gluing Data

As we will see during the next lectures, there are many choices for p-domains. But, in general, p-domains are associated with simplices of \mathcal{K}. For instance, the vertices of \mathcal{K}.

We can define a one-to-one correspondence between p-domains and vertices of \mathcal{K}.

Parametric Pseudo-Manifolds

Gluing Data

The previous correspondence implies that the number of p-domains is equal to the number of vertices of \mathcal{K}. A distinct choice of correspondence may yield a different number.

The choice of a geometry for the p-domains is a key decision too.

Parametric Pseudo-Manifolds

Gluing Data

Intuitively, each p-domain is an open "disk" that is consistently glued to other p domains in order to define the topology of the image, M, of the parametric pseudosurface.

Since a vertex u of \mathcal{K} is connected only to the vertices of \mathcal{K} that belong to the link, $1 \mathrm{k}(u, \mathcal{K})$, of u in \mathcal{K}, it is natural to think of the p-domain, Ω_{u}, which is associated with vertex u, as the interior of a polygon in \mathbb{E}^{2} with the same number of vertices as $1 \mathrm{k}(u, \mathcal{K})$.

Parametric Pseudo-Manifolds

Gluing Data

To simplify calculations, we can assume that Ω_{u} is a regular polygon inscribed in a unit circle centered at the origin of a local coordinate system of \mathbb{E}^{2}. We can also assume that one vertex of Ω_{u} is located at the point $(0,1)$. Now, Ω_{u} is uniquely defined.

Parametric Pseudo-Manifolds

Gluing Data

Formally, let $I=\{u \mid u$ is a vertex in $\mathcal{K}\}, n_{u}$ be the number of vertices of the link, $\operatorname{lk}(u, \mathcal{K})$, of u in \mathcal{K}, and P_{u} be the regular, n_{u}-polygon whose vertices are located at the points

$$
\left(\cos \left(i \cdot \frac{2 \pi}{n_{u}}\right), \sin \left(i \cdot \frac{2 \pi}{n_{u}}\right)\right),
$$

for all $i=0,1, \ldots, n_{u}-1$. Then, we can define $\Omega_{u}=\stackrel{\circ}{P}_{u}$, where $\stackrel{\circ}{P}_{u}$ is the interior of P_{u}.

Parametric Pseudo-Manifolds

Gluing Data

Checking...
(1) For every $i \in I$, the set Ω_{i} is a nonempty open subset of \mathbb{E}^{n} called parametrization domain, for short, p-domain, and any two distinct p-domains are pairwise disjoint, i.e.,

$$
\Omega_{i} \cap \Omega_{j}=\varnothing,
$$

for all $i \neq j$.

Our p-domains are (connected) open subsets of \mathbb{E}^{2}. If we assume that they live in distinct copies of \mathbb{E}^{2}, then they will not overlap, and hence condition (1) of Definition 7.1 holds.

Parametric Pseudo-Manifolds

Gluing Data

What about gluing domains? The following picture should help us find a good choice:

Parametric Pseudo-Manifolds

Gluing Data

As we can see, the intersection of the stars, $\operatorname{st}(u, \mathcal{K})$ and $\operatorname{st}(w, \mathcal{K})$, of u and w consists of exactly two triangles. These triangles share an edge in both $\operatorname{st}(u, \mathcal{K})$ and $\operatorname{st}(w, \mathcal{K})$. So, we can think of defining the gluing domains as diamond-shaped, open subsets of the p-domains.

Parametric Pseudo-Manifolds

Gluing Data

To precisely define gluing domains, we associate a 2-dimensional simplicial complex, \mathcal{K}_{u}, with each p-domain Ω_{u}. The complex \mathcal{K}_{u} satisfies the following two conditions: (1) $\left|\mathcal{K}_{u}\right|$, is the closure, $\overline{\Omega_{u}}$, of Ω_{u} and (2) \mathcal{K}_{u} is isomorphic to the star, $\operatorname{st}(u, \mathcal{K})$, of u in K.

An obvious choice for \mathcal{K}_{u} is the canonical triangulation of $\overline{\Omega_{u}}$:

Parametric Pseudo-Manifolds

Gluing Data

Fix any counterclockwise enumeration, $u_{0}, u_{1}, \ldots, u_{m}$, of the vertices in $\operatorname{lk}(u, \mathcal{K})$.

Parametric Pseudo-Manifolds

Gluing Data

Let u_{0}^{\prime} be the vertex of \mathcal{K}_{u} located at the point $(0,1)$.

Let

$$
u_{0}^{\prime}, u_{1}^{\prime}, \ldots, u_{m}^{\prime}
$$

be the counterclockwise enumeration of the vertices of $\operatorname{lk}\left(u^{\prime}, \mathcal{K}_{u}\right)$ starting with u_{0}^{\prime}.

Parametric Pseudo-Manifolds

Gluing Data

Let

$$
f_{u}: \operatorname{st}(u, \mathcal{K})^{(0)} \rightarrow \mathcal{K}_{u}^{(0)}
$$

be the simplicial map given by $f_{u}(u)=u^{\prime}$ and $f_{u}\left(u_{i}\right)=u_{i}^{\prime}$, for $i=0, \ldots, m$.

It is easily verified that f_{u} is a simplicial isomorphism.

Parametric Pseudo-Manifolds

Gluing Data

Let u and w be any two vertices of \mathcal{K} such that $[u, w]$ is an edge in \mathcal{K}.

Let x and y be the other two vertices of \mathcal{K} that also belong to both $\operatorname{st}(u, \mathcal{K})$ and $\mathrm{st}(w, \mathcal{K})$.

Assume that x precedes w in a counterclockwise traversal of the vertices of $1 \mathrm{k}(u, \mathcal{K})$ starting at y.

Parametric Pseudo-Manifolds

Gluing Data

We can now define the gluing domains, $\Omega_{u w}$ and $\Omega_{w u}$, as $\Omega_{u w}=\stackrel{\circ}{Q}_{u w}$ and $\Omega_{w u}=\stackrel{\circ}{Q}_{w u}$, where

$$
Q_{u w}=\left[f_{u}(u), f_{u}(x), f_{u}(w), f_{u}(y)\right] \quad \text { and } \quad Q_{w u}=\left[f_{w}(w), f_{w}(y), f_{w}(u), f_{w}(x)\right]
$$

are the quadrilaterals given by the vertices $f_{u}(u), f_{u}(x), f_{u}(w), f_{u}(y)$ of \mathcal{K}_{u} and the vertices $f_{w}(w), f_{w}(y), f_{w}(u), f_{w}(x)$ of \mathcal{K}_{w}, and $\stackrel{\circ}{Q}_{u w}$ and $\stackrel{\circ}{Q}_{w u}$ are the interiors of $Q_{u w}$ and $Q_{w u}$.

Parametric Pseudo-Manifolds

Gluing Data

Formally, for every $(u, w) \in I \times I$, we let

$$
\Omega_{u w}= \begin{cases}\Omega_{u} & \text { if } u=w \\ \varnothing & \text { if } u \neq w \text { and }[u, w] \text { is not an edge of } \mathcal{K} \\ \stackrel{\circ}{Q}_{u w} & \text { if } u \neq w \text { and }[u, w] \text { is an edge of } \mathcal{K}\end{cases}
$$

Parametric Pseudo-Manifolds

Gluing Data

Checking...
(2) For every pair $(i, j) \in I \times I$, the set $\Omega_{i j}$ is an open subset of Ω_{i}. Furthermore, $\Omega_{i i}=\Omega_{i}$ and $\Omega_{j i} \neq \varnothing$ if and only if $\Omega_{i j} \neq \varnothing$. Each nonempty subset $\Omega_{i j}$ (with $i \neq j$) is called a gluing domain.

By definition, the sets Ω_{u}, \varnothing, and $\stackrel{\circ}{Q}_{w u}$ are open in \mathbb{E}^{2}. Furthermore, the sets $\stackrel{\circ}{Q}_{u w}$ and $\stackrel{\circ}{Q}_{w u}$ are well-defined and nonempty, for every $u, w \in I$ such that $[u, w]$ is an edge of \mathcal{K}.

So, for every $u, w \in I$, we have that $\Omega_{u w} \neq \varnothing$ iff $[u, w]$ is an edge of \mathcal{K}. Thus, for every $u, w \in I, \Omega_{u w} \neq \varnothing$ iff $\Omega_{w u} \neq \varnothing$, and hence condition (2) of Definition 7.1 also holds.

Parametric Pseudo-Manifolds

Gluing Data

Our definitions of p-domain and gluing domain naturally lead us to a gluing process induced by the gluing of the stars of the vertices of \mathcal{K} along their common edges and triangles.

The gluing strategy we adopted here does not depend on the geometry of the p domains and gluing domains, but on the adjacency relations of vertices and edges of \mathcal{K}.

However, the geometry of the p-domains and gluing domains have a strong influence in the level of difficulty of the transition maps and parametrizations we choose to use.

Despite of our commitment to a particular geometry, we will present next an axiomatic way of defining the transition maps. Our axiomatic definition should be as much independent of the geometry of the p-domains and gluing domains as possible.

