

Introduction to Computational Manifolds and Applications

Part 1 - Constructions

Prof. Marcelo Ferreira Siqueira

mfsiqueira@dimap.ufrn.br

Departmento de Informática e Matemática Aplicada Universidade Federal do Rio Grande do Norte Natal, RN, Brazil

Simplicial Surfaces

We will start investigating the construction of 2-dimensional PPM's in \mathbb{E}^3 .

In the previous lecture, we considered a polygon as a sketch of the shape of the curve we wanted to build. Now, we need another object to play the same role the polygon did.

We can think of a few choices, but the easiest one is arguably a polygonal mesh.

So, let us start with a triangle mesh, which is a formally known as a simplicial surface.

Simplicial Surfaces

Definition 9.1. Given a finite family, $(a_i)_{i \in I}$, of points in \mathbb{E}^n , we say that $(a_i)_{i \in I}$ is *affinely independent* if the family of vectors, $(a_i a_j)_{j \in (I - \{i\})}$, is linearly independent for some $i \in I$.

Simplicial Surfaces

Definition 9.2. Let a_0, \ldots, a_d be any d+1 affinely independent points in \mathbb{E}^n , where d is a non-negative integer. The *simplex* σ spanned by the points a_0, \ldots, a_d is the convex hull of these points, and is denoted by $[a_0, \ldots, a_d]$. The points a_0, \ldots, a_d are the *vertices* of σ . The *dimension*, $\dim(\sigma)$, of the simplex σ is d, and σ is also called a d-simplex.

In \mathbb{E}^n , the largest number of affinely independent points is n+1.

So, in \mathbb{E}^n , we have simplices of dimension 0, 1, ..., n. A 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron. Furthermore, the convex hull of any nonempty subset of vertices of a simplex is a simplex.

Simplicial Surfaces

Definition 9.3. Let $\sigma = [a_0, \dots, a_d]$ be a d-simplex in \mathbb{E}^n . A *face* of σ is a simplex spanned by a nonempty subset of $\{a_0, \dots, a_d\}$; if this subset is proper then the face is called a *proper face*. A face of σ whose dimension is k, i.e., a k-simplex, is called a k-face.

a 2-face: $[a_0, a_1, a_2]$

3 proper 1-faces: $[a_0, a_1]$, $[a_0, a_2]$, $[a_1, a_2]$

3 proper 0-faces: $[a_0]$, $[a_1]$, $[a_2]$

Simplicial Surfaces

Definition 9.4. A *simplicial complex* K in \mathbb{E}^n is a finite collection of simplices in \mathbb{E}^n such that

- (1) if a simplex is in K, then all its faces are in K;
- (2) if $\sigma, \tau \in \mathcal{K}$ are simplices such that $\sigma \cap \tau \neq \emptyset$, then $\sigma \cap \tau$ is a face of both σ and τ .

Simplicial Surfaces

Definition 9.5. The *dimension*, $\dim(\mathcal{K})$, of a simplicial complex, \mathcal{K} , is the largest dimension of a simplex in \mathcal{K} , i.e., $\dim(\mathcal{K}) = \max\{\dim(\sigma) \mid \sigma \in \mathcal{K}\}$. We refer to a *d*-dimensional simplicial complex as simply a *d*-complex. The set consisting of the union of all points in the simplices of \mathcal{K} is called the *underlying space of* \mathcal{K} , and it is denoted by $|\mathcal{K}|$. The underlying space, $|\mathcal{K}|$, of \mathcal{K} is also called the *geometric realization* of \mathcal{K} .

a 2-complex

Simplicial Surfaces

A simplicial complex is a combinatorial object (i.e., a finite collection of simplices).

The underlying space of a simplicial complex is a topological object, a subset of some \mathbb{E}^n .

a 2-complex

Simplicial Surfaces

Definition 9.6. Let \mathcal{K} be a simplicial complex in \mathbb{E}^n . Then, for any simplex σ in \mathcal{K} , we define two other complexes, the *star*, st(σ , \mathcal{K}), and the *link*, lk(σ , \mathcal{K}), of σ in \mathcal{K} , as follows:

 $st(\sigma, \mathcal{K}) = \{ \tau \in \mathcal{K} \mid \exists \eta \text{ in } \mathcal{K} \text{ such that } \sigma \text{ is a face of } \eta \text{ and } \tau \text{ is a face of } \eta \}$

and

 $lk(\sigma, \mathcal{K}) = \{ \tau \in \mathcal{K} \mid \tau \text{ is in } st(\sigma, \mathcal{K}) \text{ and } \tau \text{ and } \sigma \text{ have no face in common} \}.$

Simplicial Surfaces

Definition 9.7. A 2-complex \mathcal{K} in \mathbb{E}^n is called a *simplicial surface without boundary* if every 1-simplex of \mathcal{K} is the face of precisely two simplices of \mathcal{K} , and the underlying space of the link of each 0-simplex of \mathcal{K} is homeomorphic to the unit circle, $S^1 = \{x \in \mathbb{E}^2 \mid ||x|| = 1\}.$

The set consisting of the 0-, 1-, and 2-faces of a 3-simplex is a simplicial surface without boundary.

Simplicial Surfaces

The simplicial complex consisting of the proper faces of two 3-simplices (i.e., two tetrahedra) sharing a common vertex **is not** a simplicial surface without boundary as the link of the common vertex of the two 3-simplices is not homeomorphic to the unit circle, S^1 .

Simplicial Surfaces

From now on, we will refer to a simplicial surface without boundary as simply a simplicial surface. The underlying space of a simplicial surface is called its *underlying surface*.

The underlying surface of a simplicial surface is a topological 2-manifold in \mathbb{E}^n .

Simplicial Surfaces

Definition 9.8. Let \mathcal{K} be a simplicial complex in \mathbb{E}^n . For each integer i, with $0 \le i \le dim(\mathcal{K})$, we define $\mathcal{K}^{(i)}$ as the simplicial complex consisting of all j-simplices of \mathcal{K} , for every j such that $0 \le j \le i$. Moreover, if \mathcal{L} is a simplicial complex in \mathbb{E}^m , then a map

$$f:\mathcal{K}^{(0)}\to\mathcal{L}^{(0)}$$

is called a *simplicial map* if whenever $[a_0, \ldots, a_d]$ is a simplex in \mathcal{K} , then $[f(a_0), \ldots, f(a_d)]$ is a simplex in \mathcal{L} . A simplicial map is a *simplicial isomorphism* if it is a bijective map, and if its inverse is also a simplicial map. Finally, if there exists a simplicial isomorphism from \mathcal{K} to \mathcal{L} , then we say that \mathcal{K} and \mathcal{L} are *simplicially isomorphic*.

Simplicial Surfaces

 $\mathcal K$ and $\mathcal L$ are simplicially isomorphic.

Simplicial Surfaces

Let

$$f:\mathcal{K}^{(0)}\to\mathcal{L}^{(0)}$$

be given by

$$f(a_0) = b_5$$
, $f(a_1) = b_3$, $f(a_2) = b_2$, $f(a_3) = b_1$, $f(a_4) = b_0$, $f(a_5) = b_4$.

Simplicial Surfaces

It is easily verified that f is a simplicial isomorphism.

Gluing Data

Given a simplicial surface, K, in \mathbb{E}^3 , we are interested in building a parametric pseudo-surface, M, in \mathbb{E}^3 such that the image, M, of M is homeomorphic to the underlying surface, |K|, of K, and such that M also *approximates* the geometry of |K|.

Gluing Data

As we did before, let us first focus on the definition of a set of gluing data.

Unfortunately, this task is not as easy as it was in the one-dimensional case.

The key is to notice that the simplicial surface, \mathcal{K} , which is a combinatorial object, explicitly defines a topological structure on $|\mathcal{K}|$ (via the adjacency relations of all simplices).

So, we should define p-domains, gluing domains, and transition functions based on K.

Gluing Data

As we will see during the next lectures, there are many choices for p-domains. But, in general, p-domains are associated with simplices of K. For instance, the vertices of K.

We can define a one-to-one correspondence between p-domains and vertices of K.

Gluing Data

The previous correspondence implies that the number of p-domains is equal to the number of vertices of K. A distinct choice of correspondence may yield a different number.

The choice of a geometry for the *p*-domains is a key decision too.

Gluing Data

Intuitively, each *p*-domain is an open "disk" that is consistently glued to other *p*-domains in order to define the topology of the image, *M*, of the parametric pseudo-surface.

Since a vertex u of K is connected only to the vertices of K that belong to the link, lk(u, K), of u in K, it is natural to think of the p-domain, Ω_u , which is associated with vertex u, as the interior of a polygon in \mathbb{E}^2 with the same number of vertices as lk(u, K).

Gluing Data

To simplify calculations, we can assume that Ω_u is a regular polygon inscribed in a unit circle centered at the origin of a local coordinate system of \mathbb{E}^2 . We can also assume that one vertex of Ω_u is located at the point (0,1). Now, Ω_u is uniquely defined.

Gluing Data

Formally, let $I = \{u \mid u \text{ is a vertex in } \mathcal{K}\}$, n_u be the number of vertices of the link, $lk(u, \mathcal{K})$, of u in \mathcal{K} , and P_u be the regular, n_u -polygon whose vertices are located at the points

$$\left(\cos\left(i\cdot\frac{2\pi}{n_u}\right),\sin\left(i\cdot\frac{2\pi}{n_u}\right)\right)$$
,

for all $i = 0, 1, ..., n_u - 1$. Then, we can define $\Omega_u = \stackrel{\circ}{P}_u$, where $\stackrel{\circ}{P}_u$ is the interior of P_u .

Gluing Data

Checking...

(1) For every $i \in I$, the set Ω_i is a nonempty open subset of \mathbb{E}^n called parametrization domain, for short, p-domain, and any two distinct p-domains are pairwise disjoint, i.e.,

$$\Omega_i \cap \Omega_j = \emptyset$$
,

for all $i \neq j$.

Our *p*-domains are (connected) open subsets of \mathbb{E}^2 . If we assume that they live in distinct copies of \mathbb{E}^2 , then they will not overlap, and hence condition (1) of Definition 7.1 holds.

Gluing Data

What about gluing domains? The following picture should help us find a good choice:

Gluing Data

As we can see, the intersection of the stars, $\operatorname{st}(u, \mathcal{K})$ and $\operatorname{st}(w, \mathcal{K})$, of u and w consists of exactly two triangles. These triangles share an edge in both $\operatorname{st}(u, \mathcal{K})$ and $\operatorname{st}(w, \mathcal{K})$. So, we can think of defining the gluing domains as *diamond-shaped*, open subsets of the p-domains.

Gluing Data

To precisely define gluing domains, we associate a 2-dimensional simplicial complex, \mathcal{K}_u , with each p-domain Ω_u . The complex \mathcal{K}_u satisfies the following two conditions: (1) $|\mathcal{K}_u|$, is the closure, $\overline{\Omega}_u$, of Ω_u and (2) \mathcal{K}_u is isomorphic to the star, st(u, \mathcal{K}), of u in K.

An obvious choice for \mathcal{K}_u is the canonical triangulation of $\overline{\Omega_u}$:

Gluing Data

Fix *any* counterclockwise enumeration, u_0, u_1, \ldots, u_m , of the vertices in lk(u, K).

Gluing Data

Let u'_0 be the vertex of \mathcal{K}_u located at the point (0,1).

Let

$$u'_0, u'_1, \ldots, u'_m$$

be the counterclockwise enumeration of the vertices of $lk(u', K_u)$ starting with u'_0 .

Gluing Data

Let

$$f_u: \operatorname{st}(u, \mathcal{K})^{(0)} \to \mathcal{K}_u^{(0)}$$

be the simplicial map given by $f_u(u) = u'$ and $f_u(u_i) = u'_i$, for i = 0, ..., m.

It is easily verified that f_u is a simplicial isomorphism.

Gluing Data

Let u and w be any two vertices of K such that [u, w] is an edge in K.

Let x and y be the other two vertices of K that also belong to both $\operatorname{st}(u,K)$ and $\operatorname{st}(w,K)$.

Assume that x precedes w in a counterclockwise traversal of the vertices of lk(u, K) starting at y.

Gluing Data

We can now define the gluing domains, Ω_{uw} and Ω_{wu} , as $\Omega_{uw} = \overset{\circ}{Q}_{uw}$ and $\Omega_{wu} = \overset{\circ}{Q}_{wu}$, where

$$Q_{uw} = [f_u(u), f_u(x), f_u(w), f_u(y)]$$
 and $Q_{wu} = [f_w(w), f_w(y), f_w(u), f_w(x)]$

are the quadrilaterals given by the vertices $f_u(u)$, $f_u(x)$, $f_u(w)$, $f_u(y)$ of \mathcal{K}_u and the vertices $f_w(w)$, $f_w(y)$, $f_w(u)$, $f_w(x)$ of \mathcal{K}_w , and Q_{uw} and Q_{wu} are the interiors of Q_{uw} and Q_{wu} .

Gluing Data

Formally, for every $(u, w) \in I \times I$, we let

$$\Omega_{uw} = \begin{cases} \Omega_u & \text{if } u = w, \\ \emptyset & \text{if } u \neq w \text{ and } [u, w] \text{ is not an edge of } \mathcal{K}, \\ \mathring{Q}_{uw} & \text{if } u \neq w \text{ and } [u, w] \text{ is an edge of } \mathcal{K}. \end{cases}$$

Gluing Data

Checking...

(2) For every pair $(i,j) \in I \times I$, the set Ω_{ij} is an open subset of Ω_i . Furthermore, $\Omega_{ii} = \Omega_i$ and $\Omega_{ji} \neq \emptyset$ if and only if $\Omega_{ij} \neq \emptyset$. Each nonempty subset Ω_{ij} (with $i \neq j$) is called a gluing domain.

By definition, the sets Ω_u , \emptyset , and $\overset{\circ}{Q}_{wu}$ are open in \mathbb{E}^2 . Furthermore, the sets $\overset{\circ}{Q}_{uw}$ and $\overset{\circ}{Q}_{wu}$ are well-defined and nonempty, for every $u,w\in I$ such that [u,w] is an edge of \mathcal{K} .

So, for every $u, w \in I$, we have that $\Omega_{uw} \neq \emptyset$ iff [u, w] is an edge of \mathcal{K} . Thus, for every $u, w \in I$, $\Omega_{uw} \neq \emptyset$ iff $\Omega_{wu} \neq \emptyset$, and hence condition (2) of Definition 7.1 also holds.

Gluing Data

Our definitions of p-domain and gluing domain naturally lead us to a gluing process induced by the gluing of the stars of the vertices of K along their common edges and triangles.

The gluing strategy we adopted here does not depend on the geometry of the p-domains and gluing domains, but on the adjacency relations of vertices and edges of K.

However, the geometry of the *p*-domains and gluing domains have a strong influence in the level of difficulty of the transition maps and parametrizations we choose to use.

Despite of our commitment to a particular geometry, we will present next an axiomatic way of defining the transition maps. Our axiomatic definition should be as much independent of the geometry of the *p*-domains and gluing domains as possible.