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Simplicial Surfaces

We will start investigating the construction of 2-dimensional PPM’s in E3.

In the previous lecture, we considered a polygon as a sketch of the shape of the curve
we wanted to build. Now, we need another object to play the same role the polygon
did.

We can think of a few choices, but the easiest one is arguably a polygonal mesh.

So, let us start with a triangle mesh, which is a formally known as a simplicial sur-
face.
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Simplicial Surfaces

Definition 9.1. Given a finite family, (ai)i∈I , of points in En, we say that (ai)i∈I is
affinely independent if the family of vectors, (aiaj)j∈(I−{i}), is linearly independent for
some i ∈ I.
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Simplicial Surfaces

Definition 9.2. Let a0, . . . , ad be any d + 1 affinely independent points in En, where
d is a non-negative integer. The simplex σ spanned by the points a0, . . . , ad is the
convex hull of these points, and is denoted by [a0, . . . , ad]. The points a0, . . . , ad are
the vertices of σ. The dimension, dim(σ), of the simplex σ is d, and σ is also called a
d-simplex.

In En, the largest number of affinely independent points is n + 1.

So, in En, we have simplices of dimension 0, 1, . . . , n. A 0-simplex is a point, a 1-
simplex is a line segment, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron.
Furthermore, the convex hull of any nonempty subset of vertices of a simplex is a
simplex.
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Simplicial Surfaces

Definition 9.3. Let σ = [a0, . . . , ad] be a d-simplex in En. A face of σ is a simplex
spanned by a nonempty subset of {a0, . . . , ad}; if this subset is proper then the face
is called a proper face. A face of σ whose dimension is k, i.e., a k-simplex, is called a
k-face.

a0 a1

a2

a 2-face: [a0, a1, a2]

a0 a1

a2

3 proper 0-faces: [a0], [a1], [a2]

a0 a1

a2

3 proper 1-faces: [a0, a1], [a0, a2], [a1, a2]

a0 a1

a2
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Simplicial Surfaces

violates (1) violates (2) a simplicial complex

Definition 9.4. A simplicial complex K in En is a finite collection of simplices in En

such that

(1) if a simplex is in K, then all its faces are in K;

(2) if σ, τ ∈ K are simplices such that σ ∩ τ �= ∅, then σ ∩ τ is a face of both σ and
τ.
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Simplicial Surfaces

a 2-complex

Definition 9.5. The dimension, dim(K), of a simplicial complex, K, is the largest
dimension of a simplex in K, i.e., dim(K) = max{dim(σ) | σ ∈ K}. We refer to
a d-dimensional simplicial complex as simply a d-complex. The set consisting of the
union of all points in the simplices of K is called the underlying space of K, and it is
denoted by |K|. The underlying space, |K|, of K is also called the geometric realization
of K.
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Simplicial Surfaces

a 2-complex

A simplicial complex is a combinatorial object (i.e., a finite collection of simplices).

The underlying space of a simplicial complex is a topological object, a subset of some
En.
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Simplicial Surfaces

Definition 9.6. Let K be a simplicial complex in En. Then, for any simplex σ in K,
we define two other complexes, the star, st(σ,K), and the link, lk(σ,K), of σ in K, as
follows:

st(σ,K) = {τ ∈ K | ∃η in K such that σ is a face of η and τ is a face of η}

and

lk(σ,K) = {τ ∈ K | τ is in st(σ,K) and τ and σ have no face in common} .

σ

K st(σ,K) lk(σ,K)
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Simplicial Surfaces

Definition 9.7. A 2-complex K in En is called a simplicial surface without boundary if
every 1-simplex of K is the face of precisely two simplices of K, and the underlying
space of the link of each 0-simplex of K is homeomorphic to the unit circle, S1 =
{x ∈ E2 | �x� = 1}.

The set consisting of the 0-, 1-, and 2-faces of a 3-simplex is a simplicial surface without boundary.
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Simplicial Surfaces

σ

The simplicial complex consisting of the proper faces of two 3-simplices (i.e., two
tetrahedra) sharing a common vertex is not a simplicial surface without boundary
as the link of the common vertex of the two 3-simplices is not homeomorphic to the
unit circle, S1.
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Simplicial Surfaces

From now on, we will refer to a simplicial surface without boundary as simply a
simplicial surface. The underlying space of a simplicial surface is called its underlying
surface.

The underlying surface of a simplicial surface is a topological 2-manifold in En.

K |K|
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Simplicial Surfaces

Definition 9.8. Let K be a simplicial complex in En. For each integer i, with 0 ≤ i ≤
dim(K), we define K(i) as the simplicial complex consisting of all j-simplices of K,
for every j such that 0 ≤ j ≤ i. Moreover, if L is a simplicial complex in Em, then a
map

f : K(0) → L(0)

is called a simplicial map if whenever [a0, . . . , ad] is a simplex in K, then
[ f (a0), . . . , f (ad)] is a simplex in L. A simplicial map is a simplicial isomorphism if
it is a bijective map, and if its inverse is also a simplicial map. Finally, if there ex-
ists a simplicial isomorphism from K to L, then we say that K and L are simplicially
isomorphic.
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Simplicial Surfaces

E3 E2

K L

a0
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a2

a3

a4

a5

b1

b0

b2

b3

b4

b5

K and L are simplicially isomorphic.
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Simplicial Surfaces

E3 E2

K L

a0

a1

a2

a3

a4

a5

b1

b0

b2

b3

b4

b5

Let
f : K(0) → L(0)

be given by

f (a0) = b5, f (a1) = b3, f (a2) = b2, f (a3) = b1, f (a4) = b0, f (a5) = b4 .
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Simplicial Surfaces

E3 E2

K L

a0

a1

a2

a3

a4

a5

b1

b0

b2

b3

b4

b5

It is easily verified that f is a simplicial isomorphism.
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Gluing Data

Given a simplicial surface, K, in E3, we are interested in building a parametric
pseudo-surface, M, in E3 such that the image, M, of M is homeomorphic to the
underlying surface, |K|, ofK, and such that M also approximates the geometry of |K|.

K M
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Gluing Data

As we did before, let us first focus on the definition of a set of gluing data.

Unfortunately, this task is not as easy as it was in the one-dimensional case.

So, we should define p-domains, gluing domains, and transition functions based on
K.

The key is to notice that the simplicial surface, K, which is a combinatorial object,
explicitly defines a topological structure on |K| (via the adjacency relations of all
simplices) .
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Gluing Data

As we will see during the next lectures, there are many choices for p-domains. But,
in general, p-domains are associated with simplices of K. For instance, the vertices
of K.

We can define a one-to-one correspondence between p-domains and vertices of K.

Ωv

Ωw

Ωu

E2

u

v w

E3
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Gluing Data

The choice of a geometry for the p-domains is a key decision too.

The previous correspondence implies that the number of p-domains is equal to the
number of vertices of K. A distinct choice of correspondence may yield a different
number.

Ωv

Ωw

Ωu

E2

u

v w

E3
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Gluing Data

Intuitively, each p-domain is an open "disk" that is consistently glued to other p-
domains in order to define the topology of the image, M, of the parametric pseudo-
surface.

E3

u
Ωu

E2

Since a vertex u of K is connected only to the vertices of K that belong to the link,
lk(u,K), of u in K, it is natural to think of the p-domain, Ωu, which is associated
with vertex u, as the interior of a polygon in E2 with the same number of vertices as
lk(u,K).
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Gluing Data

To simplify calculations, we can assume that Ωu is a regular polygon inscribed in
a unit circle centered at the origin of a local coordinate system of E2. We can also
assume that one vertex of Ωu is located at the point (0, 1). Now, Ωu is uniquely
defined.

E3

u

Ωu

E2

(0, 1)
(0, 0)
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Gluing Data

E3

u

Ωu

E2

(0, 1)
(0, 0)

Formally, let I = {u | u is a vertex in K}, nu be the number of vertices of the link,
lk(u,K), of u in K, and Pu be the regular, nu-polygon whose vertices are located at
the points �

cos
�

i · 2π

nu

�
, sin

�
i · 2π

nu

��
,

for all i = 0, 1, . . . , nu − 1. Then, we can define Ωu =
◦
Pu, where

◦
Pu is the interior of

Pu.
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Gluing Data

Checking...

(1) For every i ∈ I, the set Ωi is a nonempty open subset of En called parametriza-
tion domain, for short, p-domain, and any two distinct p-domains are pairwise
disjoint, i.e.,

Ωi ∩Ωj = ∅ ,

for all i �= j.

Our p-domains are (connected) open subsets of E2. If we assume that they live in

distinct copies of E2, then they will not overlap, and hence condition (1) of Definition

7.1 holds.
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Gluing Data

What about gluing domains? The following picture should help us find a good
choice:

w

u

E3

(0, 1)
Ωu

(0, 0)
(0, 1)

Ωw

(0, 0)

E2
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Gluing Data

As we can see, the intersection of the stars, st(u,K) and st(w,K), of u and w consists
of exactly two triangles. These triangles share an edge in both st(u,K) and st(w,K).
So, we can think of defining the gluing domains as diamond-shaped, open subsets of
the p-domains.

w

u

E3

(0, 1)
Ωu

(0, 0)
(0, 1)

Ωw

(0, 0)

E2
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Gluing Data

To precisely define gluing domains, we associate a 2-dimensional simplicial com-
plex, Ku, with each p-domain Ωu. The complex Ku satisfies the following two condi-
tions: (1) |Ku|, is the closure, Ωu, of Ωu and (2) Ku is isomorphic to the star, st(u,K),
of u in K.

E3

u

Ωu

E2

Ku

An obvious choice for Ku is the canonical triangulation of Ωu:



Parametric Pseudo-Manifolds

Computational Manifolds and Applications (CMA) - 2011, IMPA, Rio de Janeiro, RJ, Brazil 28

Gluing Data

Fix any counterclockwise enumeration, u0, u1, . . . , um, of the vertices in lk(u,K).

E3

u

Ωu

E2

Ku

u0

u1
u2

u3
u4
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Gluing Data

Let
u�

0, u�
1, . . . , u�

m

be the counterclockwise enumeration of the vertices of lk(u�,Ku) starting with u�
0.

(0, 1)

E3

u

Ωu

E2

Ku

u0

u1
u2

u3
u4

u� u�
0

u�
2

u�
3 u�

4

Let u�
0 be the vertex of Ku located at the point (0, 1).

u�
1
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Gluing Data

(0, 1)

E3

u

Ωu

E2

Ku

u0

u1
u2

u3
u4

u� u�
0

u�
1u�

2

u�
3 u�

4

It is easily verified that fu is a simplicial isomorphism.

Let
fu : st(u,K)(0) → K(0)

u

be the simplicial map given by fu(u) = u� and fu(ui) = u�i, for i = 0, . . . , m.
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Gluing Data

Let u and w be any two vertices of K such that [u, w] is an edge in K.

Let x and y be the other two vertices of K that also belong to both st(u,K) and
st(w,K).

w

u

E3

x

y

Assume that x precedes w in a counterclockwise traversal of the vertices of lk(u,K)
starting at y.
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Gluing Data

We can now define the gluing domains, Ωuw and Ωwu, as Ωuw =
◦
Quw and Ωwu =

◦
Qwu,

where

Quw = [ fu(u), fu(x), fu(w), fu(y)] and Qwu = [ fw(w), fw(y), fw(u), fw(x)]

are the quadrilaterals given by the vertices fu(u), fu(x), fu(w), fu(y) of Ku and the

vertices fw(w), fw(y), fw(u), fw(x) of Kw, and
◦
Quw and

◦
Qwu are the interiors of Quw

and Qwu.

w

u

E3

x

y

E2

(0, 1)Ωu

fu(u)

fu(x)

fu(w)

fu(y)

(0, 1)

Ωw

fw(u) fw(x)

fw(w)
fw(y)

E2
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Gluing Data

w

u

E3

x

y

E2

(0, 1)Ωu

fu(u)

fu(x)

fu(w)

fu(y)

(0, 1)

Ωw

fw(u) fw(x)

fw(w)
fw(y)

E2

Formally, for every (u, w) ∈ I × I, we let

Ωuw =






Ωu if u = w,

∅ if u �= w and [u, w] is not an edge of K,
◦
Quw if u �= w and [u, w] is an edge of K.
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Gluing Data

Checking...

(2) For every pair (i, j) ∈ I × I, the set Ωij is an open subset of Ωi. Furthermore,
Ωii = Ωi and Ωji �= ∅ if and only if Ωij �= ∅. Each nonempty subset Ωij (with
i �= j) is called a gluing domain.

By definition, the sets Ωu, ∅, and
◦
Qwu are open in E2. Furthermore, the sets

◦
Quw and

◦
Qwu are well-defined and nonempty, for every u, w ∈ I such that [u, w] is an edge of
K.

So, for every u, w ∈ I, we have that Ωuw �= ∅ iff [u, w] is an edge of K. Thus, for
every u, w ∈ I, Ωuw �= ∅ iff Ωwu �= ∅, and hence condition (2) of Definition 7.1 also
holds.
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Gluing Data

Our definitions of p-domain and gluing domain naturally lead us to a gluing process

induced by the gluing of the stars of the vertices ofK along their common edges and

triangles.

The gluing strategy we adopted here does not depend on the geometry of the p-
domains and gluing domains, but on the adjacency relations of vertices and edges of
K.

However, the geometry of the p-domains and gluing domains have a strong influ-

ence in the level of difficulty of the transition maps and parametrizations we choose

to use.

Despite of our commitment to a particular geometry, we will present next an ax-

iomatic way of defining the transition maps. Our axiomatic definition should be as

much independent of the geometry of the p-domains and gluing domains as possi-

ble.


