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Gluing Data

Let K = {(u, w) ∈ I × I | Ωuw �= ∅}.

For every (u, w) ∈ K, we must define the transition map ϕwu : Ωuw → Ωwu, which is
a Ck-diffeomorphic function that takes Ωuw onto Ωwu, where k is a positive integer
or k = ∞.

Here, we will assume that ϕwu is a composition of five distinct maps: two rota-

tions, a double reflection, and two more general planar transformations. The latter

transformations are the main obstacles for obtaining maps satisfying condition (3) of

Definition 7.1.

The picture in the next slide illustrates the roles of each of the five maps.



(0, 1)

Ωw

(0, 0)

g−1
w ◦ h ◦ gu ◦ ruw

(0, 0)
(1, 0)gu ◦ ruw

(0, 1)

Ωu

(0, 0)

ruw
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Gluing Data

w

u

E3

x

y

E2

(0, 1)Ωu

fu(u)

fu(x)

fu(w)

fu(y)

(0, 1)

Ωw

fw(u) fw(x)

fw(w)
fw(y)

E2

p

ruw(p)

(r−1
wu ◦ g−1

w ◦ h ◦ gu ◦ ruw)(p)

(gu ◦ ruw)(p)

r−1
wu ◦ g−1

w ◦ h ◦ gu ◦ ruw

(g−1
w ◦ h ◦ gu ◦ ruw)(p)

h ◦ gu ◦ ruw

(0, 0)
(1, 0)

(h ◦ gu ◦ ruw)(p)
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Gluing Data

Let [u, w] be an edge of K. Then,

ruw : E2 → E2

is the rotation around the origin that identifies the edge [ fu(u) = u�, fu(w)] of Ku

with the edge [u�, u�0], where u� and u�0 have coordinates (0, 0) and (1, 0), respectively.

Ωu

fu(u)

fu(x)

fu(w)

fu(y)

(0, 1)

Ωu

(0, 0)
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Gluing Data

If fu(w) = u�i, for some i ∈ {0, . . . , nu − 1}, then the rotation angle, θuw, of ruw is

θuw = − i · 2π

nu
.

Ωu

fu(u)

fu(x)

fu(w)

fu(y)

(0, 1)

Ωu

(0, 0)
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Gluing Data

Ωu

fu(u)

fu(x)

fu(w)

fu(y)

(0, 1)

Ωu

(0, 0)

Note that
fu(u) = (0, 0)

fu(x) =
�

cos
�
(i− 1) · 2π

nu

�
, sin

�
(i− 1) · 2π

nu

��

fu(w) =
�

cos
�

i · 2π
nu

�
, sin

�
i · 2π

nu

��

fu(y) =
�

cos
�
(i + 1) · 2π

nu

�
, sin

�
(i + 1) · 2π

nu

��
.
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Gluing Data

Ωu

fu(u)

fu(x)

fu(w)

fu(y)

(0, 1)

Ωu

(0, 0)

So, ruw takes the quadrilateral Quw = [ fu(u), fu(x), fu(w), fu(y)] onto the quadrilat-
eral

ruw(Quw) =
�
(0, 0),

�
cos

�
−2π

nu

�
, sin

�
−2π

nu

��
, (1, 0),

�
cos

�
2π

nu

�
, sin

�
−2π

nu

���
.
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Gluing Data

The next map, gu : E2 → E2, is ideally a Ck-diffeomorphism of the plane. This
map must take the interior of the quadrilateral, ruw(Quw), onto the so-called canonical
quadrilateral,

Q =
�
(0, 0),

�
cos

�
−π

3

�
, sin

�
−π

3

��
, (1, 0),

�
cos

�π

3

�
, sin

�π

3

���
.

(0, 0)
(1, 0)(0, 1)

Ωu

(0, 0)

Q
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Gluing Data

The reason for requiring that
◦
Q be the codomain of gu is somewhat arbitrary and

unclear at this moment. But, it has to do with the cocycle condition. We will get back
to this point in a few minutes. For the time being, let us assume that such a map gu

exists.

(0, 0)
(1, 0)(0, 1)

Ωu

(0, 0)

Q
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Gluing Data

Finally, we have the map h : E2 → E2 given by h(x, y) = (1− x,−y). The map h
performs a reflection with respect to the x axis and another with respect to the line
x = 0.5.

(0, 0)
(1, 0)

(0, 0)
(1, 0)

Note that h is a rotation of 180o around the point (0.5, 0). So, we have that h = h−1.
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Gluing Data

(0, 1)

Ωw

(0, 0)

g−1
w ◦ h ◦ gu ◦ ruw

(0, 0)
(1, 0)gu ◦ ruw

(0, 1)

Ωu

(0, 0)

ruw

w

u

E3

x

y

E2

(0, 1)Ωu

fu(u)

fu(x)

fu(w)

fu(y)

(0, 1)

Ωw

fw(u) fw(x)

fw(w)
fw(y)

E2

p

ruw(p)

(r−1
wu ◦ g−1

w ◦ h ◦ gu ◦ ruw)(p)

(gu ◦ ruw)(p)

r−1
wu ◦ g−1

w ◦ h ◦ gu ◦ ruw

(g−1
w ◦ h ◦ gu ◦ ruw)(p)

h ◦ gu ◦ ruw

(0, 0)
(1, 0)

(h ◦ gu ◦ ruw)(p)
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Gluing Data

By definition, ruw and h are C∞-diffeomorphisms of the plane. So, if the map gu is

a Ck-diffeomorphism of the plane satisfying gu(ruw(
◦
Quw)) =

◦
Q, we could tentatively

define
ϕwu : Ωuw → Ωwu

such that

ϕwu(x) =

�
idΩuw if u = w ,
(r−1

wu ◦ g−1
w ◦ h ◦ gu ◦ ruw)(x) if u �= w ,

for every x ∈ Ωuw.

As we shall prove, the map ϕwu satisfies conditions 3(a) and 3(b) of Definition 7.1.
But, without knowing the map gu, we cannot say anything about condition 3(c) yet.
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Gluing Data

Checking...

(3) If we let
K = {(i, j) ∈ I × I | Ωij �= ∅} ,

then
ϕji : Ωij → Ωji

is a Ck bijection for every (i, j) ∈ K called a transition (or gluing) map.

By assumption, the gu maps are Ck-diffeomorphisms of the plane, for some integer k
or k = ∞. Since rotations and reflections are C∞-diffeomorphisms of the plane, the
composition of these maps yield a Ck-diffeomorphic transition map. So, condition 3
holds.
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Gluing Data

(a) ϕii = idΩi , for all i ∈ I,

ϕii = idΩiΩi

Checking...

By definition, ϕuw(x) = x, for every x ∈ Ωuw, whenever u = w. So, condition 3(a)
holds.
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Gluing Data

(b) ϕij = ϕ−1
ji , for all (i, j) ∈ K, and

Ωi Ωj

p

ϕ−1
ji

ϕij

Checking...
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Gluing Data

Checking...

If u = w then condition 3(b) is trivially true.

So, let us assume that u �= w. Then, for every point p ∈ Ωwu, we have (by definition)
that

ϕ−1
wu(p) = (r−1

wu ◦ g−1
w ◦ h ◦ gu ◦ ruw)−1)(p)

=
�
r−1

uw ◦ g−1
u ◦ h−1 ◦ (g−1

w )−1 ◦ (r−1
wu)−1�(p)

= (r−1
uw ◦ g−1

u ◦ h ◦ gw ◦ rwu)(p)

= ϕuw(p) .

This implies that condition 3(b) holds when u �= w too.
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Gluing Data

We cannot really verify condition 3(c) without knowing the map gu. However, it is

possible to understand what this condition requires from the map without knowing

gu.

The picture in the next slide should help us clarify the above claim.

What about condition 3(c)?

(c) For all i, j, k, if
Ωji ∩Ωjk �= ∅ ,

then

ϕij(Ωji ∩Ωjk) = Ωij ∩Ωik and ϕki(x) = ϕkj ◦ ϕji(x) ,

for all x ∈ Ωij ∩Ωik.
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Gluing Data

w

u

v

x

y
z

(0, 1)

Ωw
fw(u)

fw(x)

fw(w)

E2

fw(v)

fw(z)

fu(y)

(0, 1)

Ωu

fu(u)

fu(w)
fu(z)

fu(v)

E2

(0, 1)

E2

fv(v)fv(x) fv(y)

fv(u)fv(w)

Ωv
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Gluing Data

Note that the intersection of the stars of u, v, and w consists of exactly one triangle
and its edges and vertices. This means at most 3 p-domains overlap at the same
point.

w

u

v

z

x

y

So, the cocycle condition must hold for points that belong to the triangles Ωuw ∩Ωuv,
Ωvu ∩Ωvw, and Ωwu ∩Ωwv, which are pairwise identified by the transition functions.
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Gluing Data

But...

fu(y)

(0, 1)

Ωu

fu(u)

fu(w)
fu(z)

fu(v)

E2

(0, 1)

Ωw
fw(u)

fw(x)

fw(w)

E2

fw(v)

fw(z)

(0, 1)

E2

fv(v)fv(x) fv(y)

fv(u)fv(w)

Ωv

w

u

v

x

y
z

Ωwu ∩Ωwv = [ fw(w), fw(v), fw(u)]

Ωvu ∩Ωvw = [ fv(v), fv(u), fv(w)]

Ωuw ∩Ωuv = [ fu(u), fu(w), fu(v)]
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Gluing Data

let us set i = u, w = j, and v = k.

For the cocycle condition...

(c) For all i, j, k, if
Ωji ∩Ωjk �= ∅ ,

then

ϕij(Ωji ∩Ωjk) = Ωij ∩Ωik and ϕki(x) = ϕkj ◦ ϕji(x) ,

for all x ∈ Ωij ∩Ωik.



Parametric Pseudo-Manifolds

Computational Manifolds and Applications (CMA) - 2011, IMPA, Rio de Janeiro, RJ, Brazil 22

Gluing Data

Assume that the statement "if Ωwu ∩Ωwv �= ∅ then ϕuw(Ωwu ∩Ωwv) = Ωuv ∩Ωuw"
holds, and consider the condition "ϕvu(p) = (ϕvw ◦ ϕwu)(p), for every p ∈ Ωuv ∩
Ωuw".

So, we must show that

(c) for all u, v, and w such that [u, v, w] is a triangle of K, if

Ωwu ∩Ωwv �= ∅

then

ϕuw(Ωwu ∩Ωwv) = Ωuv ∩Ωuw and ϕvu(p) = (ϕvw ◦ ϕwu)(p) ,

for every p ∈ Ωuv ∩Ωuw.



fu(y)

(0, 1)

Ωu

fu(u)

fu(w)
fu(z)

fu(v)

E2

(0, 1)

Ωw
fw(u)

fw(x)

fw(w)

E2

fw(v)

fw(z)

(0, 1)

E2

fv(v)fv(x) fv(y)

fv(u)fv(w)

Ωv

An illustration:
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Gluing Data

p

ϕwu(p)

ϕwu

(ϕvw ◦ ϕwu)(p)

ϕvw

ϕvu(p) =

ϕvu



fu(y)

(0, 1)

Ωu

fu(u)

fu(w)
fu(z)

fu(v)

E2

(0, 1)

Ωw
fw(u)

fw(x)

fw(w)

E2

fw(v)

fw(z)

(0, 1)

E2

fv(v)fv(x) fv(y)

fv(u)fv(w)

Ωv

What is the "anatomy" of this composition?
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Gluing Data

p

(gu ◦ ruw)(p)

ϕwu

(r−1
wu ◦ g−1

w ◦ h ◦ gu ◦ ruw)(p)
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Gluing Data

(0, 0)

h

gu ◦ ruw

(0, 0)

out!

So, the composition r−1
wu ◦ g−1

w ◦ h ◦ gu ◦ ruw applied to Ωuw can be visualized as fol-
lows:

Ωu

fu(u)

fu(w)

fu(v)

r−1
wu ◦ g−1

w

out!(0, 1)
Ωw

fw(u)

fw(w)
fw(v)
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Gluing Data

(0, 1)

Ωw
fw(u)

fw(x)

fw(w)

E2

fw(v)

fw(z)

fu(y)

(0, 1)

Ωu

fu(u)

fu(w)
fu(z)

fu(v)

E2

(0, 1)

E2

fv(v)fv(x) fv(y)

fv(u)fv(w)

Ωv

What is the "anatomy" of this composition?

p

ϕwu

(r−1
wu ◦ g−1

w ◦ h ◦ gu ◦ ruw)(p)

(gw ◦ rwv ◦ r−1
wu ◦ g−1

w ◦ h ◦ gu ◦ ruw)(p)

(r−1
vw ◦ g−1

v ◦ h ◦ gw ◦ rwv ◦ r−1
wu ◦ g−1

w ◦ h ◦ gu ◦ ruw)(p)

ϕvw
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Gluing Data

(0, 1)

Ωw
fw(u)

fw(x)

fw(w)

E2

fw(v)

fw(z)

fu(y)

(0, 1)

Ωu

fu(u)

fu(w)
fu(z)

fu(v)

E2

(0, 1)

E2

fv(v)fv(x) fv(y)

fv(u)fv(w)

Ωv

p

What is the "anatomy" of this composition?

ϕvu

(r−1
vu ◦ g−1

v ◦ h ◦ gu ◦ ruv)(p)

(gu ◦ ruv)(p)
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Gluing Data

This means that if you have a candidate for the g map, you must verify if the above

expression holds for it. Obviously, this expression may be too complicated to be

useful.

Nevertheless, it can help us derive a simple sufficient condition for testing candidate
maps.

So, we must show that

(r−1
vu ◦ g−1

v ◦ h ◦ gu ◦ ruv)(p) = (r−1
vw ◦ g−1

v ◦ h ◦ gw ◦ rwv ◦ r−1
wu ◦ g−1

w ◦ h ◦ gu ◦ ruw)(p) .
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Gluing Data

We want to show that

(r−1
vu ◦ g−1

v ◦ h ◦ gu ◦ ruv)(p) = (r−1
vw ◦ g−1

v ◦ h ◦ gw ◦ rwv ◦ r−1
wu ◦ g−1

w ◦ h ◦ gu ◦ ruw)(p) .

First, note that rwv ◦ r−1
wu is equal to a rotation of 2π

nw
around (0, 0).

(0, 1)
Ωw

fw(u)

fw(x)

fw(w)fw(v)

fw(z)So,

r−1
vw ◦ g−1

v ◦ h ◦ gw ◦ rwv ◦ r−1
wu ◦ g−1

w ◦ h ◦ gu ◦ ruw = r−1
vw ◦ g−1

v ◦ h ◦ gw ◦ r 2π
nw
◦ g−1

w ◦ h ◦ gu ◦ ruw .



(0, 1)

Ωw
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Gluing Data

q

g−1
w (q)

�
r 2π

nw
◦ g−1

w
�
(q)

�
gw ◦ r 2π

nw
◦ g−1

w
�
(q)

Now, consider the composition (gw ◦ r 2π
nw
◦ g−1

w )(q), where q is a point in gw(Ωuw ∩
Ωuv).

This picture suggests that (gw ◦ r 2π
nw
◦ g−1

w )(q) = r π
3
(q) might be a reasonable choice.
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Gluing Data

So,

r−1
vw ◦ g−1

v ◦ h ◦ gw ◦ r 2π
nw
◦ g−1

w ◦ h ◦ gu ◦ ruw = r−1
vw ◦ g−1

v ◦ h ◦ r π
3
◦ h ◦ gu ◦ ruw .

The same assumption we made before leads us to one more property:

(gu ◦ ruw)(p) = (r π
3
◦ gu ◦ ruv)(p), for every p ∈ Ωuw.

ruw

(0, 1)

Ωu

gu

fu(y)

(0, 1)

Ωu

fu(u)

fu(w)

fu(z)

fu(v)

p
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Gluing Data

So,

r−1
vw ◦ g−1

v ◦ h ◦ gw ◦ r 2π
nw
◦ g−1

w ◦ h ◦ gu ◦ ruw = r−1
vw ◦ g−1

v ◦ h ◦ r π
3
◦ h ◦ gu ◦ ruw .

The same assumption we made before leads us to one more property:

(gu ◦ ruw)(p) = (r π
3
◦ gu ◦ ruv)(p), for every p ∈ Ωuw.

ruv

(0, 1)

Ωu

gu

fu(y)

(0, 1)

Ωu

fu(u)

fu(w)

fu(z)

fu(v)

p
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Gluing Data

So,

r−1
vw ◦ g−1

v ◦ h ◦ gw ◦ r 2π
nw
◦ g−1

w ◦ h ◦ gu ◦ ruw = r−1
vw ◦ g−1

v ◦ h ◦ r π
3
◦ h ◦ gu ◦ ruw .

The same assumption we made before leads us to one more property:

(gu ◦ ruw)(p) = (r π
3
◦ gu ◦ ruv)(p), for every p ∈ Ωuw.

ruv

(0, 1)

Ωu
fu(y)

(0, 1)

Ωu

fu(u)

fu(w)

fu(z)

fu(v)

p
gu

r π
3
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Gluing Data

So,

r−1
vw ◦ g−1

v ◦ hwv ◦ gw ◦ r 2π
nw
◦ g−1

w ◦ huw ◦ gu ◦ ruw = r−1
vw ◦ g−1

v ◦ hwv ◦ r π
3
◦ huw ◦ r π

3
◦ gu ◦ ruv .

For the exact same reason, gv ◦ rvw(p) = r− π
3
◦ gu ◦ rvu(p), for every p ∈ Ωvw. So,

(r−1
vw ◦ g−1

v )(p) = (r−1
vu ◦ g−1

v ◦ r π
3
)(p) .

So,

r−1
vw ◦ g−1

v ◦ h ◦ gw ◦ r 2π
nw
◦ g−1

w ◦ h ◦ gu ◦ ruw = r−1
vu ◦ g−1

v ◦ r π
3
◦ h ◦ r π

3
◦ h ◦ r π

3
◦ gu ◦ ruv .

But,
h = r π

3
◦ h ◦ r π

3
◦ h ◦ r π

3
.
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Gluing Data

So,

r−1
vw ◦ g−1

v ◦ h ◦ gw ◦ r 2π
nw
◦ g−1

w ◦ h ◦ gu ◦ ruw = r−1
vu ◦ g−1

v ◦ r π
3
◦ h ◦ r π

3
◦ h ◦ r π

3
◦ gu ◦ ruv

= r−1
vu ◦ g−1

v ◦ h ◦ gu ◦ ruv

= ϕvu .

The above equality holds for every point p in Ωuv ∩ Ωuw, and hence the cocycle
condition,

ϕvu(p) = (ϕvw ◦ ϕwu)(p) ,

is satisfied (under the many assumptions we made along the way; which are they?)
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Gluing Data

We made the following assumptions:

(1) The gu map are is a Ck-diffeomorphism of the plane, for every u ∈ I.

(2) The gu map takes
◦
Quw onto

◦
Q, for every (u, w) ∈ K.

(3) The gu map satisfies (gu ◦ r 2π
nu
◦ g−1

u )(q) = r π
3
(q), where q ∈ gu(Ωu).

(4) If fu(w) precedes fu(v) in a counterclockwise enumeration of the vertices of
Ku, then (gu ◦ ruw)(p) = (r π

3
◦ gu ◦ ruv)(p), for every point p in the gluing

domain Ωuw.

(5) For all u, v, w such that [u, v, w] is a triangle of K, if Ωwu ∩Ωwv �= ∅ then

ϕuw(Ωwu ∩Ωwv) = Ωuv ∩Ωuw .
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Gluing Data

It turns out that (5) can be derived from (1)-(4). We will leave that as an exercise.

So, the point of this lecture is: if we want to know if a candidate for the g map will sat-
isfy condition 3 of Definition 7.1, we can test the map against conditions (1) through
(4).

Conditions (3) and (4) are sufficient. Are they also necessary?

We are now fully equipped to discuss the "candidate" functions in the next lecture.

More specifically, we will go over projective and conformal transformations.


