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Transition Maps

We will now study some "candidates" for the g maps of our transition maps.

First, we will consider projective transformations in RP2.

Next, we will review some simple conformal maps.

Both maps above do not fulfill all requirements for the role of the g maps. But, if we
allow a slight change in the geometry of the p-domains, simple conformal maps can
do the job.



Parametric Pseudo-Manifolds

Computational Manifolds and Applications (CMA) - 2011, IMPA, Rio de Janeiro, RJ, Brazil 3

Projective Transformations

Our goal now is to define a projective transformation, T : RP2 → RP2, that maps
◦
Quw

onto
◦
Q.

Any basis with the above property is said to be associated with the projective frame
(ai)1≤i≤n+2.

Recall that a family, (ai)1≤i≤n+2, of n + 2 points of the projective space RPn is a
projective frame (or basis) of RPn if there exists some basis (e1, . . . , en+1) of Rn+1 such
that

ai = [ei]∼ , for 1 ≤ i ≤ n + 1

and
an+2 = [en+2]∼ , where en+2 = e1 + · · · + en + en+1.
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Projective Transformations

We can view each ai as a line in Rn+1 passing through the origin in the direction of
ei.

For instance,
e1 = (1, 0, . . . , 0, 0)
e2 = (0, 1, . . . , 0, 0)

...
en = (0, 0, . . . , 1, 0)

en+1 = (0, 0, . . . , 0, 1) ,

the canonical basis of Rn+1, together with the vector en+2 = e1 + · · · + en+1, defines a
projective frame, (a1, . . . , an+2), of RPn such that ai = [ei]∼, for every 1 ≤ i ≤ n + 2.
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Projective Transformations

Consider n = 2.

A projective frame in RP2 consists of four points, a1, a2, a3, and a4, which correspond
to four lines through the origin of R3. The intersection of these lines and a plane in
R3, e.g., z = 1, defines the vertices, q1, q2, q3, and q4, of a non-degenerate quadrilat-
eral.
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Projective Transformations

Consider n = 2.

Conversely, given a non-degenerate quadrilateral with vertices q1, q2, q3, and q4 in
a plane in R3, e.g., z = 1, there is a projective frame consisting of the points a1,
a2, a3, and a4, in RP2 such that qi belongs to the line in R3 associated with ai, for
i = 1, 2, 3, 4.
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Projective Transformations

Every bijective linear map, f : Rn+1 → Rn+1, induces a function,

P( f ) : RPn → RPn ,

called a projective transformation, defined as

P( f )([u]∼) = [ f (u)]∼ .
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Projective Transformations

According to the Fundamental Theorem of Projective Geometry, if we are given any
two projective frames, (ai)1≤i≤n+2 and (bi)1≤i≤n+2, of RPn, then there exists a unique
projective transformation, T : RPn → RPn, such that T(ai) = bi, for each 1 ≤ i ≤
n + 2.

An immediate consequence of the aforementioned theorem is that there exists a
unique projective transformation between two non-degenerate quadrilaterals in the
plane z = 1.
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Projective Transformations
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Given any two non-degenerate quadrilaterals,

Q1 = [q1, q2, q3, q4] and Q2 = [p1, p2, p3, p4] ,

in the plane z = 1, the projective transformation, T : RP2 → RP2, that maps Q1 to
Q2 can be computed in three steps as the composition of two projective transforma-
tions.

q1 q2

q3

q4

p1 p2
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p4
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Projective Transformations
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First, we compute the projective transformation, T1 : RP2 → RP2, that maps the
square, Q = [r1, r2, r3, r4], where r1 = (1, 0, 1), r2 = (0, 1, 1), r3 = (0, 0, 1), and r4 =
(1, 1, 1) to the quadrilateral Q1. In order to do so, we view T1 as a linear map that
takes ri to a point in the line passing through the origin and qi, for each i = 1, 2, 3, 4.
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Projective Transformations

Since (r1, r2, r3, r4) and (q1, q2, q3, q4) are non-degenerate quadrilaterals, we have that
(r1, r2, r3) and (q1, q2, q3) are linearly independent. Furthermore, as points of the
plane H of equation z = 1, they are also affinely independent. So, we can write r4

and q4 as
r4 = r1 + r2 − r3

and
q4 = λ1q1 + λ2q2 + λ3q3

for some unique scalars λ1, λ2, λ3 such that λ1 + λ2 + λ3 = 1.
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Projective Transformations

In fact, λ1, λ2, λ3 are solutions of the system



x1 x2 x3

y1 y2 y3

1 1 1








λ1

λ2

λ3



 =




x4

y4

1



 ,

where q1 = (x1, y1, 1), q2 = (x2, y2, 1), q3 = (x3, y3, 1), q4 = (x4, y4, 1) are the
coordinates of q1, q2, q3, q4 with respect to the basis (r1, r2, r3). Furthermore, since
(r1, r2, r3, r4) and (q1, q2, q3, q4) are non-degenerate quadrilaterals, we get λi �= 0 for
i = 1, 2, 3.
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Projective Transformations

Let a1 = r1, a2 = r2, a3 = −r3, and let b1 = λ1q1, b2 = λ2q2, b3 = λ3q3, so that

r4 = a4 = a1 + a2 + a3

and
q4 = b4 = b1 + b2 + b3 .
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Projective Transformations

Since r1, r2, r3 are linearly independent, we know that there is a unique linear map,

f : R3 → R3

such that
f (a1) = b1 , f (a2) = b2 , and f (a3) = b3 ,

and by linearity,

f (r4) = f (a1 + a2 + a3) = f (a1) + f (a2) + f (a3) = b1 + b2 + b3 = q4 .
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Projective Transformations

With respect to the basis (r1, r2, r3), we have

f (r1) = b1 , f (r2) = b2 and f (r3) = −b3 .

So, with respect to the basis (r1, r2, r3), the associated matrix, A, of the map f is

A =




λ1x1 λ2x2 −λ3x3

λ1y1 λ2y2 −λ3y3

λ1 λ2 −λ3



 .
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Projective Transformations

The change of basis matrix P from the canonical basis (e1, e2, e3) to the basis
(u1, u2, u3) is

P =




1 0 0
0 1 0
1 1 −1





and its inverse is

P−1 =




1 0 0
0 1 0
1 1 −1



 .
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Projective Transformations

If we assume that we pick the coordinates of q1, q2, q3, q4 with respect to the canonical
basis, the matrix of our linear map with respect to the canonical basis is the unique
matrix A� that maps each column u1, u2, and u3 of the matriz P to the corresponding
column of the matrix A representing v1, v2, and v3 over the canonical basis, namely

A =




λ1x1 λ2x2 λ3x3

λ1y1 λ2y2 λ3y3

λ1 λ2 λ3



 ,

and this it must be given by

A� = A · P−1 = AP .
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Projective Transformations

That is,

A� =




λ1x1 λ2x2 −λ3x3

λ1y1 λ2y2 −λ3y3

λ1 λ2 −λ3



 ·




1 0 0
0 1 0
1 1 −1





=




λ1x1 + λ3x3 λ2x2 + λ3x3 −λ3x3

λ1y1 + λ3y3 λ2y2 + λ3y3 −λ3y3

λ1 + λ3 λ2 + λ3 −λ3



 .
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Projective Transformations

Since 


1 0 0
0 1 0
1 1 −1



 ·




x

y

1



 =




x

y

x + y − 1



 ,

if we want to represent the restriction of the projective transformation to the plane
H (in the canonical basis), we can also apply the matrix A to the point in R3 of coor-
dinates 


x

y

x + y − 1



 .
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Projective Transformations

Thus, we can define T1 : RP2 → RP2 as T1(s) = A1 · s, for every s ∈ R3, where

A1 =




λ1x1 + λ3x3 λ2x2 + λ3x3 −λ3 · x3

λ1y1 + λ3y3 λ2y2 + λ3y3 −λ3 · y3

λ1 + λ3 λ2 + λ3 −λ3



 ,

and the coordinates of s ∈ R3 is given with respect to the canonical basis, (e1, e2, e3).
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Projective Transformations

So, if s = (x, y, 1) ∈ Q, then we get t = T1(s) = (x�, y�, 1) such that x� and y� are

x� =
(λ1x1 + λ3x3)x + (λ2x2 + λ3x3)y − λ3x3

(λ1 + λ3)x + (λ2 + λ3)y − λ3

y� =
(λ1y1 + λ3y3)x + (λ2y2 + λ3y3)y − λ3y3

(λ1 + λ3)x + (λ2 + λ3)y − λ3
.
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Projective Transformations

We can proceed in a similar manner to define the map T2 : RP2 → RP2 taking Q
onto Q2.

The second step consists of defining the map T2 : RP2 → RP2 taking Q onto Q2.
We can proceed as before, but using p1, p2, p3, and p4 instead of q1, q2, q3, and q4,
respectively.

The third step consists of defining the map T. This is done by noticing that T1 is a
bijection, as A1 is invertible. So, T−1

1 maps Q1 onto Q, and hence we define the map
T as

T(p) = (T2 ◦ T−1
1 )(p) = A2 · A−1

1 · p ,

for every p ∈ Q1, where A2 is the matrix associated with the projective transforma-
tion T2.
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Projective Transformations

Can the transformation T play the role of our g map in our transition functions?

However, the map T does not satisfies the cocycle condition.

The map T is definitely a C∞-diffeomorphism of the plane (viewed as the plane z = 1
in R3).

Furthermore, T maps
◦
Quw onto

◦
Q, while T−1 maps

◦
Q onto

◦
Quw.
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Projective Transformations

To see why, consider a triangle, σ = [u, v, w] of K, such that nu = 5, nv = 6, and
nw = 7.

w

v

u

ruw(Quw) = ruv(Quv) =

�
(0, 0),

�
cos

�
−2π

5

�
, sin

�
−2π

5

��
, (1, 0),

�
cos

�
2π

5

�
, sin

�
2π

5

���
,

rvu(Qvu) = rvw(Qvw) =
�
(0, 0),

�
cos

�
−π

3

�
, sin

�
−π

3

��
, (1, 0),

�
cos

�π

3

�
, sin

�π

3

���
,

rwv(Qwv) = rwu(Qwu) =

�
(0, 0),

�
cos

�
−2π

7

�
, sin

�
−2π

7

��
, (1, 0),

�
cos

�
2π

7

�
, sin

�
2π

7

���
.

By construction,
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Projective Transformations

We define
gu : E2 → E2, gv : E2 → E2, and gw : E2 → E2

as the projective maps that takes ruw(Quw), rvu(Qvu), and rwv(Qwv) onto Q, respec-
tively, where

Q =
�
(0, 0),

�
cos

�
−π

3

�
, sin

�
−π

3

��
, (1, 0),

�
cos

�π

3

�
, sin

�π

3

���
.
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Projective Transformations

The matrices associated with the gv and g−1
v maps are the identity matrix.

The matrices associated with the gu and g−1
u maps are:




1.000000 0.000000 0.000000
0.000000 0.562777 0.000000
0.552786 0.000000 0.447214





and 


1.000000 0.000000 0.000000
0.000000 1.776900 0.000000

−1.236070 0.000000 2.236070



 ,

respectively.
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Projective Transformations

The matrices associated with the gw and g−1
w maps are




1.000000 0.000000 0.000000
0.000000 1.381260 0.000000

−0.655971 0.000000 1.655970





and 


1.000000 0.000000 0.000000
0.000000 0.723974 0.000000
0.396125 0.000000 0.603875



 ,

respectively.
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Projective Transformations

Suppose that w precedes v in a counterclockwise enumeration of the vertices in
lk(u,K).

w

v

u

Suppose also that the p-domains are defined as below:

Ωu
(0, 1)

fu(v)

fu(w)fu(u)

(0, 1)

Ωv fv(v) fv(u)

fv(w)

(0, 1)
Ωw

fw(w)

fw(u)

fw(v)
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Projective Transformations

Ωu
(0, 1)

fu(v)

fu(w)fu(u)

(0, 1)

Ωv fv(v) fv(u)

fv(w)

(0, 1)
Ωw

fw(w)

fw(u)

fw(v)

So,
ϕvu(x) = (g−1

v ◦ h ◦ gu ◦ r− 2π
5
)(x) , for all x ∈ Ωuv,

ϕwu(x) = (r 2π
7
◦ g−1

w ◦ h ◦ gu)(x) , for all x ∈ Ωuw,

and
ϕvw(x) = (r π

3
◦ g−1

v ◦ h ◦ gw)(x) , for all x ∈ Ωwv.
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Projective Transformations

Ωu
(0, 1)

fu(v)

fu(w)fu(u)

(0, 1)

Ωv fv(v) fv(u)

fv(w)

(0, 1)
Ωw

fw(w)

fw(u)

fw(v)

We can show that
ϕuw(Ωwu ∩Ωwv) = Ωuv ∩Ωuw .

So, the statement "if Ωwu ∩Ωwv �= ∅ then ϕuw(Ωwu ∩Ωwv) = Ωuv ∩Ωuw" holds. But,
it is not the case that ϕvu(x) = (ϕvw ◦ ϕwu)(x), for all x ∈ Ωuw ∩ Ωuv. For instance,
pick

x = (0.5, 0.5) ∈ (Ωuv ∩Ωuw) .
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Projective Transformations

Indeed,
ϕvu(0.5, 0.5) = (0.207988, 0.227109) ,

while
(ϕvw ◦ ϕwu)(0.5, 0.5) = (0.363339, 0.433479) .

It is worth noticing that map gu is a C∞-diffeomorphism of the plane. Furthermore,

it maps
◦
Quv onto

◦
Q, the canonical quadrilateral. But, the cocycle condition does not

hold.

As a matter of fact, the map gu does not satisfy (gu ◦ r 2π
nu

◦ g−1
u )(x) = r π

3
, for q ∈

gu(Ωu).

The map gu does not satisfy (gu ◦ ruw)(x) = (r π
3
◦ gu ◦ ruv)(x), for all x ∈ Ωuv either.
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Complex Functions as Mappings

We will now consider some elementary functions in one complex variable.

These functions can be viewed as mappings from one plane to the other.

So, we will investigate how they can play the role of the g map in our transition
functions.

As we shall see, we will not succeed unless we change the geometry of the p-
domains.
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Complex Functions as Mappings

Let us recall a few elementary definitions...

A number of the form
z = x + i y ,

where x and y are real numbers and i is a number such that i2 = −1 is called a
complex number. The number i is called the imaginary unit, and the numbers x and
y are called the real part and the imaginary part of z, denoted by Re(z) and Im(z),
respectively.

A complex number z = x + i y is uniquely defined determined by an ordered pair of
real numbers, (x, y). The first and second entries of the ordered pairs correspond to
the real and imaginary parts of z. Conversely, z = x + i y uniquely determines (x, y).
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Complex Functions as Mappings

The above coordinate plane is called the complex plane or simply the z-plane. The hor-
izontal or x-axis is called the real axis and the vertical or y-axis is called the imaginary
axis.

Since (x, y) can be interpreted as the components of a vector, a complex number

z = x + i y

can be viewed as a vector whose initial point is the origin and whose terminal point
is (x, y).

x

y z = x + i y
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Complex Functions as Mappings

The modulus or absolute value of z = x + i y, denoted by |z|, is the real number

|z| =
�

x2 + y2 .

A point (x, y) in rectangular coordinates has the polar description, (r, θ), where x, y,
r, and θ are related by x = r · cos(θ) and y = r · sin(θ). Thus, a nonzero complex
number,

z = x + i y ,

can be written as

z = r · cos(θ) + i r · sin(θ) = r ·
�
cos(θ) + i sin(θ)

�
,

which is the polar form of the complex number z. The angle θ is the argument, arg(z),
of z.
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Complex Functions as Mappings

The polar form can be extremely convenient for certain operations on complex num-
bers.

If
z1 = r1 ·

�
cos(θ1) + i sin(θ1)

�
and z2 = r2 ·

�
cos(θ2) + i sin(θ2)

�

are any two complex numbers, then the complex numbers z1 · z2 and z1
z2

are equal to

z1 · z2 = r1 · r2 ·
�
cos(θ1 + θ2) + i sin(θ1 + θ2)

�

and z1
z2

=
r1
r2

·
�
cos(θ1 − θ2) + i sin(θ1 − θ2)

�
.
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Complex Functions as Mappings

Also, for any integer n and for any complex number z = r ·
�
cos(θ) + i sin(θ)

�
, we

get
zn = rn ·

�
cos(n · θ) + i sin(n · θ)

�
,

the nth power, zn, of z. In particuar, when z = cos(θ) + i sin(θ), we have |z| = r = 1
and �

cos(n · θ) + i sin(n · θ)
�n = cos(n · θ) + i sin(n · θ) .
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Complex Functions as Mappings

If z = x + i y is a complex number, then

ez = ex+i y = ex ·
�
cos(y) + i sin(y)

�

is the exponential of z. Note that ez reduces to ex when y = 0. Moreover, if z =
r ·

�
cos(θ) + i sin(θ)

�
is the polar form of the complex number z, then we have that

z = r · ei θ , as
ei θ = e0 · cos(θ) + i sin(θ) = cos(θ) + i sin(θ) .
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Complex Functions as Mappings

A function f defined on a set of complex numbers is called a function of a complex
variable z or a complex function. The image w of z will be some complex number,
u + i v, i.e.,

w = f (z) = u(x, y) + i v(x, y) ,

where u and v are the imaginary parts of w and are real-valued functions. Obviously,
we cannot draw the graph of the complex function w = f (z) with less than four axes.
However, we can interpret f as a mapping or transformation from the z-plane to the
w-plane.

x

y

u

v

w = u + i v

z = x + i y
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Complex Functions as Mappings

For the function
f (z) = z2 ,

the image of the line Re(z) = 1 is a curve. Indeed, if we write z as = x + i y, then

z2 = (x2 − y2) + i 2xy =⇒ f (z) = u(x, y) + i v(x, y) ,

with u(x, y) = x2 − y2 and v(x, y) = 2xy. Since Re(z) = 1, substituting x = 1 into u
and v, we get u = 1− y2 and v = 2y. These parametric equations of a curve in the
w-plane.
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Complex Functions as Mappings

Re(z) = 1 f (Re(z))
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Complex Functions as Mappings

Now, let us see some elementary maps.

The mapping f (z) = ez:

In general, if z(t) = x(t) + i y(t), with a ≤ t ≤ b, describes a curve C is the z-plane,
then w = f (z(t)) is a parametric representation of the corresponding curve, C�, in
the w-plane.

Recall that if z = x + i y then f (z) = ez = ex ·
�
cos(y) + i sin(y)

�
.
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A vertical line segment x = a in the upper half of the z-plane can be described by the
curve z(t) = a + i t, for 0 ≤ t ≤ π. So, we get f (z(t)) = ea · ei t. This means that the
image of the line segment z(t) is a semi-circle with center at w = a and with radius
r = ea.
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�0.2 �0.1 0.0 0.1 0.2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

v

�4 �2 0 2 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Similarly, a horizontal line y = b can be parametrized by z(t) = t + i b, with −∞ <
t < ∞, and so f (z(t)) = et · ei b. Since arg(w) = b and |w| = et, the image is a
ray emanating from the origin. Because 0 ≤ arg(z) ≤ π, the image of the entire
horizontal strip, {x + i y | −∞ ≤ x ≤ ∞ and 0 ≤ y ≤ π}, is the upper half-plane v ≥
0.



Parametric Pseudo-Manifolds

Computational Manifolds and Applications (CMA) - 2011, IMPA, Rio de Janeiro, RJ, Brazil 45

Complex Functions as Mappings

Unlike the real function ex, the complex function f (z) = ez is periodic with the
complex period i 2π. Indeed, since ei 2π = cos(2π) + i sin(2π) = 1, we must have
that

ez+i 2π = ez · ei 2π = ez ,

for all z. So,
f (z + i 2π) = f (z) .
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Complex Functions as Mappings

The elementary function f (z) = z + z0 may be interpreted as a translation in the
z-plane.

In turn, the elementary function g(z) = ei θ0 · z may be interpreted as a rotation
through θ0 degrees. Indeed, if we let z be the complex number z = r · ei θ0 , then we
get

w = g(z) = r · ei (θ+θ0) .

Finally, if the complex mapping

h(z) = ei θ0 · z + z0

is applied to a region R that is centered at the origin, then the image region R� may
be obtained by first rotating R through θ0 degrees and then translating the center to
z0.
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Complex Functions as Mappings

For instance,
h(z) = i z + 3

maps the horizontal strip−1 ≤ y ≤ 1 onto the vertical strip 2 ≤ x ≤ 4. Indeed, if the
horizontal strip −1 ≤ x ≤ 1 is rotated through 90o (i.e., ei π/2 = i), then the vertical
−1 ≤ x ≤ 1 results. Finally, a translation of 3 units to the right yields the vertical
strip 2 ≤ x ≤ 4.
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A complex function of the form f (z) = zα, where α is a fixed positive real number,
is called a real power function. If z = r · ei θ , then w = f (z) = rα · ei α·θ . Since
0 ≤ arg(w) ≤ α · θ0, function f opens or contracts the wedge 0 ≤ arg(z) ≤ θ0 by a
factor of α.
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Complex Functions as Mappings

We can show that a circular arc with center at the origin is mapped by f (z) = zα onto
a similar circular arc, and that rays emanating from the origin are mapped by f to
similar rays.
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Complex Functions as Mappings

Now, let us consider a p-domain, Ωu, where u is a vertex of K such that nu = 5.

Ωu

By definition,

ruv(Quv) =
�
(0, 0),

�
cos

�
−2π

5

�
, sin

�
−2π

5

��
, (1, 0),

�
cos

�
2π

5

�
, sin

�
2π

5

���
.



Parametric Pseudo-Manifolds

Computational Manifolds and Applications (CMA) - 2011, IMPA, Rio de Janeiro, RJ, Brazil 52

Complex Functions as Mappings

What is the image of ruv(Quv) under the map f (z) = zα, where α = 5
6 ?

Is that the case that f (ruv(Quv)) = Q?

Ωu

Note that

f (0 + i 0) = 0 , f (1 + i 0) = 1 , f
�

ei (− 2π
5 )

�
= ei (− π

3 ), and f
�

ei 2π
5

�
= ei π

3 .
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Complex Functions as Mappings

Unfortunately, NO!

The region f (ruv(Quv)) will look like the picture below:

This is because f (z) = zα scales the modulus of z = r · (cos(θ) + i sin(θ)): r becomes
rα.
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Complex Functions as Mappings

However, if we consider replacing our p-domains by "curved" p-domains, then we

can make the f maps works in our favor. The idea is to let ruv(Quv) be the image of

Q under

f−1(w) = w
6

5 = r
6

5 ·
�

cos

�
6

5
· θ

�
+ i sin

�
6

5
· θ

��
, for all w ∈ Q.

x

y

u

vf−1
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Complex Functions as Mappings

The picture below illustrates the shape of the p-domain Ωu (left) obtained by apply-
ing f−1 to Q and then rotating f−1(Q) around the origin. The result is a "curved"
p-domain (right).

Ωu Ωu
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Ωu

fu(v)

fu(w)fu(u) Ωv fv(v) fv(u)

fv(w)

Ωw
fw(w)

fw(u)

fw(v)
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Complex Functions as Mappings

The map Π is a C∞-diffeomorphism. So, working with polar coordinates is fine as
well.

So,
gu(x, y) = (Π−1 ◦ Γu ◦Π)(x, y) ,

where
Π : E2 − {(0, 0)}→ R+ × ]− π , π [

is the map that converts Cartesian coordinates to polar coordinates, Π(x, y) = (r, θ),
and

Γu : R+ × ]− π , π [ → R+ × ]− π , π [

is the map
Γu(r, θ) =

�
r

nu
6 ,

nu
6

· θ
�

.
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Complex Functions as Mappings

Indeed, for every (u, w) ∈ K,

ϕwu : Ωuw → Ωwu ,

where

ϕwu(x) =

�
x if u = w,�
r−1

wu ◦ g−1
w ◦ h ◦ gu ◦ ruw

�
(x) if u �= w,

for every x ∈ Ωuw.

Note that the previous g maps are defined in E2 − {(0, 0)}. The fact that (0, 0) does
not belong to the domain of g is not a problem, as (0, 0) is not part of a gluing domain,
except when the gluing domain is the p-domain itself. But, in this case, the transition
map is defined as the identity map, rather than in terms of the g maps. So, we are
safe!
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Complex Functions as Mappings

Let q be a point in Q (the canonical quadrilateral). If (s, β) are the polar coordinates of
q, then

(gu ◦ r 2π
nu
◦ g−1

u )(q) = (Π−1 ◦ Γu ◦Π ◦ r 2π
nu
◦Π−1 ◦ Γ−1

u ◦Π)(q)

= (Π−1 ◦ Γu ◦Π ◦ r 2π
nu
◦Π−1 ◦ Γ−1

u )(s, β)

= (Π−1 ◦ Γu ◦Π ◦ r 2π
nu
◦Π−1)

�
s

6
nu ,

6
nu

· β

�

= (Π−1 ◦ Γu)
�

s
6

nu ,
6

nu
· β +

2π

nu

�

= Π−1
��

s
6

nu

� nu
6 ,

nu
6

·
�

6
nu

· β +
2π

nu

��

= Π−1
�

s, β +
π

3

�

= r π
3
(q) .
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Complex Functions as Mappings

If (t, α) are the polar coordinates of p and if −θ is the angle of rotation of ruw, then

(t, α− θ) and
�

t, α− θ − 2π

nu

�

are the polar coordinates of ruw(p) and ruv(p), respectively, as we assumed (in our
example) that w precedes v in a counterclockwise enumeration of the vertices of
lk(u,K).

w

v

u

Let p be a point in Ωu − {(0, 0)}.
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Complex Functions as Mappings

So,

(gu ◦ ruw)(p) = (Π−1 ◦ Γu ◦Π ◦ ruw)(p)

= (Π−1 ◦ Γu)(t, α− θ)

= (Π−1)
�

t
nu
6 ,

nu
6

· (α− θ)
�

.
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Complex Functions as Mappings

In turn,

(r π
3
◦ gu ◦ ruv)(p) = (r π

3
◦Π−1 ◦ Γu ◦Π ◦ ruv)(p)

= (r π
3
◦Π−1 ◦ Γu)

�
t, α− θ − 2π

nu

�

= (r π
3
◦Π−1)

�
t

nu
6 ,

nu
6

·
�

α− θ − 2π

nu

��

= (r π
3
◦Π−1)

�
t

nu
6 ,

nu
6

· (α− θ)− π

3

�

= Π−1
�

t
nu
6 ,

nu
6

· (α− θ)
�

= (gu ◦ ruw)(p) .
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Complex Functions as Mappings

(3) The gu map satisfies (gu ◦ r 2π
nu
◦ g−1

u )(q) = r π
3
(q), where q ∈ gu(Ωu).

So, the gu map satisfies the following four conditions:

(4) If fu(w) precedes fu(v) in a counterclockwise enumeration of the vertices of
lk(u,K), then (gu ◦ ruw)(p) = (r π

3
◦ gu ◦ ruv)(p), for every point p in the gluing

domain Ωuw.

(2) The gu map takes ruw(Ωuw) onto
◦
Q, for every (u, w) ∈ K.

(1) The gu map is a Ck-diffeomorphism of E2 − {(0, 0)}, for every u ∈ I.
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We have not checked the following assumption:

(5) For all u, v, w such that [u, v, w] is a triangle of K, if Ωwu ∩Ωwv �= ∅ then

ϕuw(Ωwu ∩Ωwv) = Ωuv ∩Ωuw .

We will also explore that in a homework.


