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More on Transition Maps

We’ve seen a class of complex functions that can play the role of the g maps in our
transition functions. It is worth mentioning that we still have to check assumption (5)
for them.

Recall that we had to change the geometry of the p-domains, so that we could define a

Ck-diffeomorphism between
◦
Q and the gluing domains, where k is a positive integer

or k = ∞.

However, as we shall see in a coming lecture, this change in geometry imposes some

difficulties for defining bump functions, shape functions, and parametrizations on

the p-domains.

Now, we present an alternative choice for the g maps. This alternative also requires
a change in the geometry of the p-domains. But, this change is more natural and less
troublesome.
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More on Transition Functions

More specifically, Ωu is the interior of the circle, Cu, inscribed in |Ku|:

Ωu =

�
(x, y) ∈ E2 | x2 + y2 <

�
cos

�
π

nu

��2
�

.

The key idea is to consider the p-domain as an open disk in the underlying space of
Ku.

u

E3 E2

Ku fu(u)
Ωu
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More on Transition Functions
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More on Transition Functions

Like we did before, let gu : E2 − {(0, 0)} → E2 − {(0, 0)} be given by the composi-

tion

gu(p) = (Π−1 ◦ Γu ◦Π)(p) ,

for every p ∈ R2 − {(0, 0)}. However, Γu : R+ × ]− π , π [→ R+ × ]− π , π [ is

given by

Γu(r, θ) =
�

cos(π/6)
cos(π/nu)

· r ,
nu
6

· θ

�
,

where (r, θ) = Π(p) are the polar coordinates of p.
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More on Transition Functions

(0, 0) (0, 0)

p

cos
�

π
nu

�
cos

�
π
6
� Γu(p)

E2

Function Γu maps Ωu − {(0, 0)} onto
◦
C −{(0, 0)}, where

C =
�

(x, y) ∈ E2 | x2 + y2 ≤
�

cos
�π

6

��2
�

.
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More on Transition Functions

For any (u, w) ∈ I× I, the gluing domain Ωuw is defined as the image, (r−1
uw ◦ g−1

u )(
◦
E

), of the interior,
◦
E, of the canonical lens, E, under the composite function r−1

uw ◦ g−1
u ,

where
E = C ∩ D ,

and

C = {(x, y) | x2 + y2 ≤ (cos(π/6))2} and D = {(x, y) | (x− 1)2 + y2 ≤ (cos(π/6))2} .
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More on Transition Functions

So, for any (u, w) ∈ I × I, the gluing domain Ωuw is defined as

Ωuw =






Ωu if u = w,

(r−1
uw ◦ g−1

u )(
◦
E) if [u, w] is an edge of K,

∅ otherwise.

(r−1
uw ◦ g−1

u )(
◦
E)
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More on Transition Functions

For any (u, w) ∈ K, the transition map,

ϕwu : Ωuw → Ωwu ,

is such that, for every p ∈ Ωuw, we let

ϕwu(p) =

�
p if u = w,
(r−1

wu ◦ g−1
w ◦ h ◦ gu ◦ ruw)(p) otherwise.
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More on Transition Functions

(3) The gu map satisfies (gu ◦ r 2π
nu
◦ g−1

u )(q) = r π
3
(q), where q ∈ gu(Ωu).

(1) The gu map is a Ck-diffeomorphism of R2 − {(0, 0)}, for every u ∈ I

It is now time for checking our assumptions regarding gu:

(2) The gu map takes ruw(Ωuw) onto
◦
E for every (u, w) ∈ K.

(4) If fu(w) precedes fu(v) in a counterclockwise enumeration of the vertices of
lk(u,K), then (gu ◦ ruw)(p) = (r π

3
◦ gu ◦ ruv)(p), for every point p in the gluing

domain Ωuw.
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More on Transition Functions

We will also explore that in a homework.

We have not checked the following assumption:

(5) For all u, v, w such that [u, v, w] is a triangle of K, if Ωwu ∩Ωwv �= ∅ then

ϕuw(Ωwu ∩Ωwv) = Ωuv ∩Ωuw .
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More on Transition Functions
(  

 

t . 
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Grimm’s Construction of Gluing Data

As far as we know, Cindy Grimm and John Hughes presented the first construction

of parametric pseudo-manifolds from gluing data (see the Ph. D. thesis of Grimm,

1996).

Here, we will give an overview of this construction. We refer the audience to the

aforementioned Ph. D. thesis and to Grimm and Hughes’ SIGGRAPH 1995 paper for

details.

Pointer to these references can be found on the course web page.

The construction of the gluing data is very intricate. So, reading the above references
may be crucial for an in-depth understanding of their work and for implementation
purposes.
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Grimm’s Construction of Gluing Data

The input for the construction is any polygonal mesh. But, since we have not yet
defined such meshes, we will restrict our attention to triangle meshes (i.e., simplicial
surfaces).

As usual, let us denote the given simplicial surface by K.

The simplicial surface K is "refined" by one step of the Catmull-Clark subdivision rule,
and then the dual of the resulting (cell) complex is considered for defining the gluing
data.

The object resulting from the Catmull-Clark subdivision and its dual can be thought

of as "graphs" with straight edges immersed in E3
. Here, we will not define them in

a formal way. Instead, we will illustrate how they are obtained using the subdivision

rule.
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Grimm’s Construction of Gluing Data

K
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Grimm’s Construction of Gluing Data

face point
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Grimm’s Construction of Gluing Data

edge point
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Grimm’s Construction of Gluing Data
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Grimm’s Construction of Gluing Data
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Grimm’s Construction of Gluing Data

Dual Mesh
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Grimm’s Construction of Gluing Data

Let us denote the dual mesh by K�.
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Grimm’s Construction of Gluing Data

Note that all vertices of K� have degree four. This is the reason for defining K�.
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Grimm’s Construction of Gluing Data

The gluing data defined by Grimm’s constructions consists of one p-domain per each
component of K�; that is, we assign a p-domain with each dual mesh vertex, edge,
and face.

Here, we view a "face" as a disk-like region bounded by a simple cycle of edges

of K�
, which is the dual of a vertex of the graph obtained from the Catmull-Clark

subdivision.
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Grimm’s Construction of Gluing Data
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Grimm’s Construction of Gluing Data

So, a face can be identified with a regular n-sided polygon in E2.

The p-domains associated with vertices, edges, and faces have distinct geometry.
Furthermore, the geometry of the p-domains associated with edges (resp. faces) can
also differ.

(0, 0)

(0.5, 0.5)

(0.5,−0.5)(−0.5,−0.5)

(−0.5, 0.5)
y

x

Let V be the set of vertices of K�. Then, for each v ∈ V , we define the p-domain Ωv

as
Ωv = ] − 0.5 , 0.5 [2 .
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Grimm’s Construction of Gluing Data

Let E be the set of edges of K�. Then, for each e ∈ E, we define the p-domain Ωe

as a diamond-shaped region that consists of the interior of an hexagon with vertices
p0, . . . , p5:

y

x(0, 0)

p0

p1

p2

p3

p4

p5
p0 = (0.5− h , h · cot(π/nu))

p1 = (0.5− h , −h · cot(π/nl))

p2 =
�

0 , −cot(π/nl)
2

�

p3 = (−0.5 + h , −h · cot(π/nl))

p4 = (−0.5 + h , h · cot(π/nu))

p5 =
�

0 ,
cot(π/nu)

2

�

So, the coordinates p0, . . . , p5 depend on the parameters h, nu, and nl .
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Grimm’s Construction of Gluing Data

By construction, each edge e of K� is incident with exactly two faces, say fu and fl ,
of K�.

e

fu

fl
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Grimm’s Construction of Gluing Data

We let nu and nl be the number of vertices of fu and fl , respectively.

Now, consider two regular polygons in E2, with nu and nl sides, respectively.

If the their sides have unit length, then the distance from the center of the polygon
to the middle point of any edge of the polygon is equal to 1

2 · cot(π/nu) and 1
2 ·

cot(π/nl). This is why the second coordinate of p2 and p5 are given as 1
2 · cot(π/nu)

and − 1
2 · cot(π/nl).

l = 1
2 · cot(π/6)

l
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Grimm’s Construction of Gluing Data

The parameter h is related to the transition functions and will be defined later.

The parameter n is the number of vertices of f .

(0, 0)

y

x

(0.5− h,−0.5 + h)(−0.5 + h,−0.5 + h)

(0.5− h, 0.5− h)(−0.5 + h, 0.5− h)

n = 4 =⇒

Let F be the set of faces of K�. Then, for each f ∈ F, we define the p-domain Ω f as
the interior of a regular n-sided polygon centered at (0, 0) and whose sides are 1− 2h
units long.
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Grimm’s Construction of Gluing Data

So, if v1 and v2 are two distinct vertices in V , then Ωv1v2 = Ωv2v1 = ∅. Likewise, if
e1 and e2 are two distinct edges in E and if f1 and f2 are two distinct faces in F, then
we get

Ωe1e2 = Ωe2e1 = Ω f1 f2 = Ω f2 f1 = ∅ .

Just like before, gluing domains are determined by the adjacency relations of ver-
tices, edges, and faces of K�. In particular, p-domains associated with the same class
of elements of K� (i.e., vertices, edges, and faces) are not identified by the gluing
process.

Furthermore, if v1 = v2 then Ωv1v2 = Ωv2v1 = Ωv1 . The same is true for edges and
faces.
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Grimm’s Construction of Gluing Data

There are only three possibilities for nonempty gluing domains:

(1) The p-domain, Ωv, associated with vertex v ∈ V is glued to Ωe, the p-domain
associated with edge e ∈ E.

(2) The p-domain, Ωv, associated with vertex v ∈ V is glued to Ω f , the p-domain
associated with face f ∈ F.

(3) The p-domain, Ωe, associated with edge e ∈ E is glued to Ω f , the p-domain
associated with face f ∈ F.
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Grimm’s Construction of Gluing Data

In particular, we have

(1) Ωve �= ∅ if and only if vertex v is a vertex of edge e.

(2) Ωv f �= ∅ if and only if vertex v is a vertex of face f .

(3) Ωe f �= ∅ if and only if edge e is an edge of face f .

(4) Ωev �= ∅ if and only if edge e is incident with vertex v.

(5) Ω f v �= ∅ if and only if face f is incident with vertex v.

(6) Ω f e �= ∅ if and only if face f is incident with edge e.
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Grimm’s Construction of Gluing Data

ve0

e1

e2

e3

f0 f1

f2f3

For any given vertex v ∈ V , there are exactly nine nonempty gluing domains in Ωv:

ΩvΩve0

Ωve1

Ωve2

Ωve3

Ωv f1

Ωv f2Ωv f3

Ωv f0
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Grimm’s Construction of Gluing Data

The gluing domain Ωvei corresponds to half a diamond-shaped region:

ve0

e1

e2

e3

f0 f1

f2f3

ΩvΩve0

Ωve1

Ωve2

Ωve3

Ωv f1

Ωv f2
Ωv f3

Ωv f0
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Grimm’s Construction of Gluing Data

ve0

e1

e2

e3

f0 f1

f2f3

ΩvΩve0

Ωve1

Ωve2

Ωve3

Ωv f1

Ωv f2
Ωv f3

Ωv f0

The gluing domain Ωv fi corresponds to a non-degenerated quadrilateral:
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Grimm’s Construction of Gluing Data

For any given edge e ∈ E, there are exactly five nonempty gluing domains in Ωe:

vl vr
fl

fu

Ωevl Ωevr

Ωe fl

Ωe fu

Ωe
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Grimm’s Construction of Gluing Data

vl vr
fl

fu

Ωevl

The gluing domain Ωevl corresponds to the set of points (x, y) ∈ Ωe such that x < 0.



Ωevr
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Grimm’s Construction of Gluing Data

vl vr
fl

fu

The gluing domain Ωevr corresponds to the set of points (x, y) ∈ Ωe such that x > 0.
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Grimm’s Construction of Gluing Data

vl vr
fl

fu

Ωe fl

The gluing domain Ωe fl corresponds to the set of points (x, y) ∈ Ωe such that

y < −h · cot(π/nl) .
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Grimm’s Construction of Gluing Data

vl vr
fl

fu Ωe fu

The gluing domain Ωe fr corresponds to the set of points (x, y) ∈ Ωe such that

y > h · cot(π/nu) .
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Grimm’s Construction of Gluing Data

For any given n-sided face f ∈ F, there are exactly 2n + 1 nonempty gluing domains
in Ω f :

f

v0 v1

v2

e1e2

e0

Ω f

Ω f v0 Ω f v1

Ω f v2

Ω f e1

Ω f e0

Ω f e2
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Grimm’s Construction of Gluing Data

The gluing domains Ω f vi correspond to open quadrilaterals defined by connecting
the center of Ω f (i.e., the origin (0, 0)) to the midpoint of the edges of the closure of
Ω f .

Ω f v0 Ω f v1

Ω f v2
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Grimm’s Construction of Gluing Data

Ω f e2

Ω f e0

Ω f e1

The gluing domains Ω f ei correspond to open triangles defined by connecting the
center of Ω f (i.e., the origin (0, 0)) to the vertices of the closure of Ω f .
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Grimm’s Construction of Gluing Data

There are six types of transition functions: (1) vertex-vertex, (2) edge-edge, (3) face-
face, (4) vertex-edge, (5) vertex-face, and (6) edge-face. The first 3 functions are the
identity.

Function (6) is an affine map (takes a triangle onto a triangle).

Function (5) is a projective map (takes a quadrilateral onto a quadrilateral).

Function (4) is defined as a weighted sum of two composite functions, each of which
is the composition of an edge-face and vertex-face function. This function is bit com-
plicated.
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Grimm’s Construction of Gluing Data

The edge-face transition map, ϕ f e:

Ωe f

Ω f e

There is a unique affine transformation that takes the Ωe f onto Ω f e after a one-to-one
correspondence between the vertices of the triangles corresponding to their closures
is established.
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Grimm’s Construction of Gluing Data

The vertex-face transition map, ϕ f v:

Ωv f Ω f v
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Grimm’s Construction of Gluing Data

To compute the projective transformation that takes Ωv f onto Ω f v, we consider two
sets of points. The first contains the points p0, p1, p2, p3 that define the quadrant of
Ωv containing Ωv f . The second contains the points q0, q1, q2, and q3, which define
q quadrilateral in a regular, n-sided polygon centered at the origin and whose sides
have length 1

p0 p1

p2p3

Ωv f

q0
q1

q2
q3

Ω f v
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Grimm’s Construction of Gluing Data

The domain Ωv f is actually defined as ϕv f (Ω f v).

The vertex-edge transition map, ϕev:

ϕ fl e

ϕ fue ϕv fu

ϕv fl

ϕve
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Grimm’s Construction of Gluing Data

How can we define ϕve so that the cocycle condition holds?

Grimm did not define ϕve in a direct manner. Instead, she forced ϕve to be a weighted
sum of two composite functions: ϕv fl ◦ ϕ fl e and ϕv fu ◦ ϕ fue. Since the domain of these
functions are disjoint (in Ωev), she blended the functions along the region Ωev −
(Ωe fl ∪Ωe fu).

Ωev − (Ωe fl ∪Ωe fu)
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Grimm’s Construction of Gluing Data

The idea is to let ϕve(p) = (ϕv fl ◦ ϕ fl e)(p) if p ∈ (Ωev ∩ Ωe fl ), ϕve(p) = (ϕv fu ◦
ϕ fue)(p) if p ∈ (Ωev ∩Ωe fu), and ϕve(p) equal to some "average" value if p ∈ (Ωev −
(Ωe fl ∪Ωe fu)).

In particular,

ϕve(p) = (1− β(t)) · (ϕv fl ◦ ϕ fl e)(p) + β(t) · (ϕv fu ◦ ϕ fue)(p) ,

where β : R → [0, 1] is a function satisfying the following properties:

• β(t) = 0 for t < −h · cot(π/nl).

• β(t) = 1 for t > h · cot(π/nu).
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Grimm’s Construction of Gluing Data

• β(t) is monotonically increasing.

• β is Ck for a given k (the desired continuity of the manifold).

• The derivative of β is bounded by the function

β�(t) =






h·cot(π/6)+t
h·cot(π/6) if t ≤ 0

h·cot(π/6)−t
h·cot(π/6) if t > 0

.

Grimm shows that for k ≥ 0 the function ϕve is invertible, one-to-one, and onto.

She also tells us how to build the function β.
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Grimm’s Construction of Gluing Data

The choice of a value for the parameter h is related to the geometry of the resulting
manifold.

Grimm computes this value by solving the equation

ϕv f (0.5− h,−h · cot(π/6)) =
�

δk
2

,
δk
2

�
,

where
δk =

1
2 · (2k + 3)

,

where k is the degree of continuity of β.
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Grimm’s Construction of Gluing Data

There are a few issues with this construction.

First, the number of p-domains is large compared to the number of p-domains in the
approach we saw before.

Second, the definition of the map ϕve is not elegant.

Third, the gluing regions are small (compared to the ones in other constructions),
which may lead to visual artifacts in the resulting surfaces.


