Introduction to Computational Manifolds and Applications

Part 1 - Constructions

Prof. Marcelo Ferreira Siqueira
mfsiqueira@dimap.ufrn.br

Departmento de Informática e Matemática Aplicada Universidade Federal do Rio Grande do Norte Natal, RN, Brazil

Parametric Pseudo-Manifolds

Building Parametrizations

Recall the big picture...

Parametric Pseudo-Manifolds

Building Parametrizations

We've learned how to build a set of gluing data using distinct choices of transition maps.

Parametric Pseudo-Manifolds

Building Parametrizations

Our goal now is to learn how to build a family, $\left(\theta_{i}\right)_{i \in I}$, of parametrizations.

Parametric Pseudo-Manifolds

Building Parametrizations

We'll define the parametrizations for one set of gluing data showed in the previous lecture.

Parametric Pseudo-Manifolds

Building Parametrizations

Parametric Pseudo-Manifolds

Building Parametrizations

To define $\left(\theta_{v}\right)_{v \in I}$, we specify a family of shape functions and a family of bump functions:

$$
\left(\psi_{v}\right)_{v \in I} \quad \text { and } \quad\left(\gamma_{v}\right)_{v \in I}
$$

More specifically, for each $v \in I$, we define the shape function,

$$
\psi_{v}: \square_{v} \subseteq \mathbb{E}^{2} \rightarrow \mathbb{E}^{3}
$$

associated with Ω_{v}, as the Bézier (surface) patch of bi-degree (m, n) given by the expression

$$
\psi_{v}(p)=\sum_{0 \leq j \leq m} \sum_{0 \leq k \leq n} B_{j}^{m}(x) \cdot B_{k}^{n}(y) \cdot b_{j, k}^{v},
$$

where

Parametric Pseudo-Manifolds

Building Parametrizations

- $\square_{v}=\left[-L_{v},-L_{v}\right] \times\left[L_{v}, L_{v}\right]$, with $L_{v}=\cos \left(\frac{\pi}{n_{v}}\right)$,

Parametric Pseudo-Manifolds

Building Parametrizations

- (x, y) are the coordinates of a point p in the local coordinates system of \square_{v},

Parametric Pseudo-Manifolds

Building Parametrizations

- $\left(b_{j, k}^{v}\right) \subset \mathbb{E}^{3}$ are the control points of ψ_{v}, with $0 \leq j \leq m$ and $0 \leq k \leq n$,

$$
\text { Ex: } m=2 \text { and } n=2
$$

Parametric Pseudo-Manifolds

Building Parametrizations

- and

$$
B_{i}^{l}(t)=\binom{l}{i} \cdot\left(\frac{r-t}{r-s}\right)^{l-i} \cdot\left(\frac{t-s}{r-s}\right)^{i}
$$

is the i-th Bernstein polynomial of degree l over the affine frame $[s, r]$ such that

$$
s=-L_{v} \quad \text { and } \quad r=L_{v}
$$

for every $i \in\{0,1, \ldots, l\}$, and

$$
\sum_{0 \leq j \leq m} \sum_{0 \leq k \leq n} B_{j}^{m}(x) \cdot B_{k}^{n}(y)=1
$$

for every $x, y \in[s, r]$.

Parametric Pseudo-Manifolds

Building Parametrizations

So, $\psi_{v}(p)$ is a convex combination of the control points, $b_{j, k}^{v}$.

Parametric Pseudo-Manifolds

Building Parametrizations

How can we define the control points of ψ_{v} ?

We currently use a least squares fitting procedure.

The idea is to compute a large collection, $\left(p_{j}, p_{j}^{\prime}\right)_{j \in J}$, of pairs of parameter points and sample points, respectively, where the first element, p_{j}, is in \mathbb{E}^{2} and the second, p_{j}^{\prime}, is in \mathbb{E}^{3}.

We view p_{j}^{\prime} as the image of p_{j} under a given function, $\beta: \mathbb{E}^{2} \rightarrow \mathbb{E}^{3}$, we wish to locally approximate using the ψ_{v} 's. As we shall see, there are many choices for the function β.

Parametric Pseudo-Manifolds

Building Parametrizations

However, one of the simplest choices for the function β could be a barycentric map that takes each parameter point, p_{j}, in Ω_{v} to a sample point, p_{j}^{\prime}, in the $\operatorname{star}, \operatorname{st}(v, \mathcal{K})$, of v in \mathcal{K}.

Parametric Pseudo-Manifolds

Building Parametrizations

More precisely,

$$
p_{j}^{\prime}=\beta\left(p_{j}\right)=\beta\left(\lambda \cdot f_{v}(v)+\mu \cdot f_{v}(u)+v \cdot f_{v}(w)\right)=\lambda \cdot v+\mu \cdot u+v \cdot w,
$$

where (λ, μ, v) are the barycentric coordinates of the point p_{j} w.r.t the affine frame

$$
\left[f_{v}(v), f_{v}(u), f_{v}(w)\right]
$$

Parametric Pseudo-Manifolds

Building Parametrizations

Note that β must be piecewise defined in $\left|\mathcal{K}_{u}\right|$ (i.e., it varies in each triangle of \mathcal{K}_{u}).

Parametric Pseudo-Manifolds

Building Parametrizations

We then assemble three linear equation systems, $A X=B_{l}$, with $l=1,2,3$, each of which has exactly E_{v} equations in $(m+1) \times(n+1)$ unknowns, where $m=n=n_{v}$.

Parametric Pseudo-Manifolds

Building Parametrizations

In our current implementation, we set $E_{v}=\left(2 \cdot n_{v}+1\right)^{2}$. Observe that the value of E_{v} is, in general, not the same for any two p-domains, as it is expressed in terms of n_{v}.

Parametric Pseudo-Manifolds

Building Parametrizations

The linear equations of the systems $A X=B_{l}$, for $l=1,2,3$, come from the equalities

$$
p_{j}^{\prime}=\psi_{v}\left(p_{j}\right) \Longrightarrow\left(x_{j}^{\prime}, y_{j}^{\prime}, z_{j}^{\prime}\right)=\sum_{0 \leq j \leq m} \sum_{0 \leq k \leq n} B_{j}^{m}\left(x_{j}\right) \cdot B_{k}^{n}\left(y_{j}\right) \cdot\left(x_{j, k}^{v}, y_{j, k}^{v}, z_{j, k}^{v}\right),
$$

for all $j \in J$, where $\left(x_{j}, y_{j}\right),\left(x_{j}^{\prime}, y_{j}^{\prime}, z_{j}^{\prime}\right)$, and $\left(x_{j, k}^{v} y_{j, k}^{v}, z_{j, k}^{v}\right)$ are the coordinates of p_{j}, p_{j}^{\prime}, and $b_{j, k}^{v}$.

Parametric Pseudo-Manifolds

Building Parametrizations

So, $A X=B_{1}$ consists of E_{v} linear equations of the form

$$
x_{j}^{\prime}=\sum_{0 \leq j \leq m} \sum_{0 \leq k \leq n} B_{j}^{m}\left(x_{j}\right) \cdot B_{k}^{n}\left(y_{j}\right) \cdot x_{j, k}^{v},
$$

$A X=B_{2}$ consists of E_{v} linear equations of the form

$$
y_{j}^{\prime}=\sum_{0 \leq j \leq m} \sum_{0 \leq k \leq n} B_{j}^{m}\left(x_{j}\right) \cdot B_{k}^{n}\left(y_{j}\right) \cdot y_{j, k}^{v},
$$

and $A X=B_{3}$ consists of E_{v} linear equations of the form

$$
z_{j}^{\prime}=\sum_{0 \leq j \leq m} \sum_{0 \leq k \leq n} B_{j}^{m}\left(x_{j}\right) \cdot B_{k}^{n}\left(y_{j}\right) \cdot z_{j, k}^{v} .
$$

Each equation has $\left(n_{v}+1\right)^{2}$ unknowns. So, A has E_{v} rows and $\left(n_{v}+1\right)^{2}$ columns.

Parametric Pseudo-Manifolds

Building Parametrizations

Note that the $\left(n_{v}+1\right)^{2}$ unknowns of $A X=B_{l}$ are the l-th coordinates of the $b_{j, k}^{v}$'s.

Since $E_{v}>\left(n_{v}+1\right)^{2}$, the system $A X=B_{1}$ has more equations than unknowns. So, we compute the normal equations, $A^{t} A X=A^{t} B_{1}$, and then solve $A^{t} A X=A^{t} B_{1}$ for X.
$A^{t} A X=A^{t} B_{1}$ admits a unique solution iff $A^{t} A$ has rank $\left(n_{v}+1\right)^{2}$.

We can proceed in a similar fashion to solve $A X=B_{2}$ and $A X=B_{3}$.

Once we solve $A X=B_{l}$, for $l=1,2,3$, we have the control points $b_{j, k^{\prime}}^{v}$ and thus ψ_{v}.

Parametric Pseudo-Manifolds

Building Parametrizations

Ultimately, we want to compute θ_{τ} :

Parametric Pseudo-Manifolds

Building Parametrizations

Why not let $\theta_{v}=\psi_{v}$?

The main issue here is that $\theta_{v}(p)$ must be the same point as $\theta_{u}(q)$ whenever $q=$ $\varphi_{u v}(p)$.

However, it is extremely unlikely that $\psi_{v}(p)=\psi_{u}(q)$ whenever $q=\varphi_{u v}(p)$.

The reason is that the control points of ψ_{v} and ψ_{u} are computed independently.

Parametric Pseudo-Manifolds

Building Parametrizations

Parametric Pseudo-Manifolds

Building Parametrizations

So, what can we do?

We will use the same resource we used for the one-dimensional case: partition of unity.

For each $v \in I$, we define the bump function, $\gamma_{v}: \mathbb{E}^{2} \rightarrow \mathbb{R}$, associated with Ω_{v} such that

$$
\gamma_{v}(p)=\gamma_{v}(x, y)=\xi\left(\sqrt{x^{2}+y^{2}}\right)
$$

for every $p=(x, y) \in \mathbb{E}^{2}$, and $\xi: \mathbb{R} \rightarrow \mathbb{R}$ is the same map ξ of the one-dimensional case.

Parametric Pseudo-Manifolds

Building Parametrizations

Parametric Pseudo-Manifolds

Building Parametrizations

Recall...

For every $t \in \mathbb{R}$, we define

$$
\xi: \mathbb{R} \rightarrow \mathbb{R}
$$

as

$$
\zeta(t)= \begin{cases}1 & \text { if } t \leq H_{1} \\ 0 & \text { if } t \geq H_{2} \\ 1 /\left(1+e^{2 \cdot s}\right) & \text { otherwise }\end{cases}
$$

where H_{1}, H_{2} are constant, with $0<H_{1}<H_{2}<1$,

$$
s=\left(\frac{1}{\sqrt{1-H}}\right)-\left(\frac{1}{\sqrt{H}}\right) \quad \text { and } \quad H=\left(\frac{t-H_{1}}{H_{2}-H_{1}}\right) .
$$

Parametric Pseudo-Manifolds

Building Parametrizations

Parametric Pseudo-Manifolds

Building Parametrizations

Finally, we define

$$
\theta_{v}: \Omega_{v} \rightarrow \mathbb{E}^{3}
$$

as

$$
\theta_{v}(p)=\frac{\sum_{z \in J_{v}(p)}\left(\psi_{z} \circ \varphi_{z v}\right)(p) \cdot\left(\gamma_{z} \circ \varphi_{z v}\right)(p)}{\sum_{z \in J_{v}(p)}\left(\gamma_{z} \circ \varphi_{z v}\right)(p)}
$$

for every $p \in \Omega_{v}$, where

$$
J_{v}(p)=\left\{u \in I \mid p \in \Omega_{v u}\right\} .
$$

$J_{v}(p)$ has at least one vertex (i.e., v) and at most 3 (i.e., v plus one or two others).

We can show that $\theta_{v}(p)=\left(\theta_{u} \circ \varphi_{u v}\right)(p)=\left(\theta_{w} \circ \varphi_{w v}\right)(p)$ whenever $p \in\left(\Omega_{v u} \cap \Omega_{v w}\right)$.

Parametric Pseudo-Manifolds

Building Parametrizations

$$
\theta_{v}(p)=\left(\theta_{u} \circ \varphi_{u v}\right)(p)=\left(\theta_{w} \circ \varphi_{w v}\right)(p)
$$

$$
J_{v}(p)=\{v, u, w\}
$$

Parametric Pseudo-Manifolds

Building Parametrizations

If $J_{v}(p)=\{v\}$ then

$$
\begin{aligned}
\theta_{v}(p) & =\frac{\sum_{z \in J_{v}(p)}\left(\psi_{z} \circ \varphi_{z v}\right)(p) \cdot\left(\gamma_{z} \circ \varphi_{z v}\right)(p)}{\sum_{z \in J_{v}(p)}\left(\gamma_{z} \circ \varphi_{z v}\right)(p)} \\
& =\frac{\left(\psi_{v} \circ \varphi_{v v}\right)(p) \cdot\left(\gamma_{v} \circ \varphi_{v v}\right)(p)}{\left(\gamma_{v} \circ \varphi_{v v}\right)(p)} \\
& =\left(\psi_{v} \circ \varphi_{v v}\right)(p) \\
& =\left(\psi_{v} \circ \operatorname{id}_{\Omega_{v}}\right)(p) \\
& =\psi_{v}(p) .
\end{aligned}
$$

Parametric Pseudo-Manifolds

Building Parametrizations

If $J_{v}(p)=\{v, u\}$ then

$$
\begin{aligned}
\theta_{v}(p) & =\frac{\sum_{z \in J_{v}(p)}\left(\psi_{z} \circ \varphi_{z v}\right)(p) \cdot\left(\gamma_{z} \circ \varphi_{z v}\right)(p)}{\sum_{z \in J_{v}(p)}\left(\gamma_{z} \circ \varphi_{z v}\right)(p)} \\
& =\frac{\left(\psi_{v} \circ \varphi_{v v}\right)(p) \cdot\left(\gamma_{v} \circ \varphi_{v v}\right)(p)+\left(\psi_{u} \circ \varphi_{u v}\right)(p) \cdot\left(\gamma_{u} \circ \varphi_{u v}\right)(p)}{\left(\gamma_{v} \circ \varphi_{v v}\right)(p)+\left(\gamma_{u} \circ \varphi_{u v}\right)(p)} \\
& =\frac{\left(\psi_{v} \circ \mathrm{id}_{\Omega_{v}}\right)(p) \cdot\left(\gamma_{v} \circ \mathrm{id}_{\Omega_{v}}\right)(p)+\left(\psi_{u} \circ \varphi_{u v}\right)(p) \cdot\left(\gamma_{u} \circ \varphi_{u v}\right)(p)}{\left(\gamma_{v} \circ \mathrm{id}_{\Omega_{v}}\right)(p)+\left(\gamma_{u} \circ \varphi_{u v}\right)(p)} \\
& =\frac{\psi_{v}(p) \cdot \gamma_{v}(p)+\left(\psi_{u} \circ \varphi_{u v}\right)(p) \cdot\left(\gamma_{u} \circ \varphi_{u v}\right)(p)}{\gamma_{v}(p)+\left(\gamma_{u} \circ \varphi_{u v}\right)(p)}
\end{aligned}
$$

Parametric Pseudo-Manifolds

Building Parametrizations

If $J_{v}(p)=\{v, u, w\}$ then

$$
\begin{aligned}
\theta_{v}(p) & =\frac{\sum_{z \in J_{v}(p)}\left(\psi_{z} \circ \varphi_{z v}\right)(p) \cdot\left(\gamma_{z} \circ \varphi_{z v}\right)(p)}{\sum_{z \in J_{v}(p)}\left(\gamma_{z} \circ \varphi_{z v}\right)(p)} \\
& =\frac{\left(\psi_{v} \circ \varphi_{v v}\right)(p) \cdot\left(\gamma_{v} \circ \varphi_{v v}\right)(p)+\left(\psi_{u} \circ \varphi_{u v}\right)(p) \cdot\left(\gamma_{u} \circ \varphi_{u v}\right)(p)+\left(\psi_{w} \circ \varphi_{w v}\right)(p) \cdot\left(\gamma_{w} \circ \varphi_{w v}\right)(p)}{\left(\gamma_{v} \circ \varphi_{v v}\right)(p)+\left(\gamma_{u} \circ \varphi_{u v}\right)(p)+\left(\gamma_{w} \circ \varphi_{w v}\right)(p)} \\
& =\frac{\left(\psi_{v} \circ \operatorname{id}_{\Omega_{v}}\right)(p) \cdot\left(\gamma_{v} \circ \operatorname{id}_{\Omega_{v}}\right)(p)+\left(\psi_{u} \circ \varphi_{u v}\right)(p) \cdot\left(\gamma_{u} \circ \varphi_{u v}\right)(p)+\left(\psi_{w} \circ \varphi_{w v}\right)(p) \cdot\left(\gamma_{w} \circ \varphi_{w v}\right)(p)}{\left(\gamma_{v} \circ \operatorname{id}_{\Omega_{v}}\right)(p)+\left(\gamma_{u} \circ \varphi_{u v}\right)(p)+\left(\gamma_{w} \circ \varphi_{w v}\right)(p)} \\
& =\frac{\psi_{v}(p) \cdot \gamma_{v}(p)+\left(\psi_{u} \circ \varphi_{u v}\right)(p) \cdot\left(\gamma_{u} \circ \varphi_{u v}\right)(p)+\left(\psi_{w} \circ \varphi_{w v}\right)(p) \cdot\left(\gamma_{w} \circ \varphi_{w v}\right)(p)}{\gamma_{v}(p)+\left(\gamma_{u} \circ \varphi_{u v}\right)(p)+\left(\gamma_{w} \circ \varphi_{w v}\right)(p)} .
\end{aligned}
$$

Parametric Pseudo-Manifolds

Building Parametrizations

In

$$
\theta_{v}(p)=\frac{\sum_{z \in J_{v}(p)}\left(\psi_{z} \circ \varphi_{z v}\right)(p) \cdot\left(\gamma_{z} \circ \varphi_{z v}\right)(p)}{\sum_{z \in J_{v}(p)}\left(\gamma_{z} \circ \varphi_{z v}\right)(p)}
$$

the term

$$
\left(\psi_{z} \circ \varphi_{z v}\right)(p)
$$

can be viewed as the contribution of ψ_{z} to $\theta_{v}(p)$, which is weighted by $\left(\gamma_{z} \circ \varphi_{z v}\right)(p)$.

A key observation for the proof of consistency: if $w \in J_{v}(p)$ then $J_{w}\left(\varphi_{w v}(p)\right)=J_{v}(p)$.

All functions involved in the definition of θ_{v} are C^{∞}.

Finally, our surface is defined as $\bigcup_{v \in I} \theta_{v}\left(\Omega_{v}\right)$.

Parametric Pseudo-Manifolds

Building Parametrizations

There is only one issue with the construction of S : the sample points, p_{j}^{\prime}, were located in the surface $|\mathcal{K}|$, which is piecewise-linear. As a result, S will look piecewise-linear too!

To improve the visual quality of S, we define the parametrization θ_{v} as a local approximation for a "curved" geometry. In order to do so, we assume that a parametric surface, say S^{\prime}, has been defined over the simplicial surface, \mathcal{K}. There are many choices!

Two simple choices are:

- PN triangles
- Subdivision surfaces

Parametric Pseudo-Manifolds

Building Parametrizations

Regardless of the choice of S^{\prime}, we assume that S^{\prime} is a union of parametric patches given by

$$
b_{\sigma}: \triangle \subset \mathbb{E}^{2} \rightarrow \mathbb{E}^{3},
$$

where each b_{σ} is associated with a triangle σ of \mathcal{K} and is defined on a triangle, $\triangle \subset$ \mathbb{E}^{2}; i.e,

$$
S^{\prime}=\bigcup_{\sigma \in \mathcal{K}^{(2)}} b_{\sigma}(\triangle)
$$

Parametric Pseudo-Manifolds

Building Parametrizations

Suppose that $\sigma=[v, u, w]$.

Parametric Pseudo-Manifolds

Building Parametrizations

After sampling Ω_{v}, we map the points p_{j} inside the triangle $\left[f_{v}(v), f_{v}(u), f_{v}(w)\right]$ to the triangle \triangle using a barycentric map, say b, and then we compute the points $p_{j}^{\prime}=$ $\left(b_{\sigma} \circ b\right)\left(p_{j}\right)$.

Parametric Pseudo-Manifolds

Building Parametrizations

After sampling Ω_{v}, we map the points p_{j} inside the triangle $\left[f_{v}(v), f_{v}(u), f_{v}(w)\right]$ to the triangle \triangle using a barycentric map, say b, and then we compute the points $p_{j}^{\prime}=$ $\left(b_{\sigma} \circ b\right)\left(p_{j}\right)$.

So, our given function β can be piecewise defined as $\beta=b_{\sigma} \circ b$ in each p-domain.

Parametric Pseudo-Manifolds

Building Parametrizations

Once we have the pairs $\left(p_{j}, p_{j}^{\prime}\right)$ for each p-domain Ω_{v}, we can proceed as before to compute the control points of ψ_{v}, which is a Bézier surface patch of bi-degree $\left(n_{v}, n_{v}\right)$.

However, since we locally approximate the shape of a "curved" geometry (i.e., the surface $S^{\prime}=\bigcup_{\sigma \in \mathcal{K}^{(2)}} b_{\sigma}(\triangle)$), our surface, $S=\bigcup_{v \in I} \theta_{v}\left(\Omega_{v}\right)$, has a curved geometry too.

More specifically, the shape of S is very similar to the shape of S^{\prime}, but S is smooth (i.e., C^{∞}) regardless of the degree of smoothness of the surface S^{\prime}, which should be at least C^{0}.

Let us see some examples...

Parametric Pseudo-Manifolds

Examples

simplicial surface \mathcal{K}

Parametric Pseudo-Manifolds

Examples

Parametric Pseudo-Manifolds

Examples

surface S

Parametric Pseudo-Manifolds

Examples

Loop subdivision surface

Parametric Pseudo-Manifolds

Examples

surface S

Parametric Pseudo-Manifolds

Examples

simplicial surface \mathcal{K}

Parametric Pseudo-Manifolds

Examples

PN triangle

Parametric Pseudo-Manifolds

Examples

surface S

Parametric Pseudo-Manifolds

Examples

Loop subdivision surface

Parametric Pseudo-Manifolds

Examples

surface S

Parametric Pseudo-Manifolds

Examples

simplicial surface \mathcal{K}

Parametric Pseudo-Manifolds

Examples

PN triangle

Parametric Pseudo-Manifolds

Examples

surface S

Parametric Pseudo-Manifolds

Examples

Loop subdivision surface

Parametric Pseudo-Manifolds

Examples

surface S

Parametric Pseudo-Manifolds

Examples

simplicial surface \mathcal{K}

Parametric Pseudo-Manifolds

Examples

PN triangle

Parametric Pseudo-Manifolds

Examples

surface S

Parametric Pseudo-Manifolds

Examples

Loop subdivision surface

Parametric Pseudo-Manifolds

Examples

surface S

Parametric Pseudo-Manifolds

Concluding Remarks

We can play with many choices for the function $\beta=b_{\sigma} \circ b$. But, keep in mind that we can only do so because the manifold-based approach for surface construction allows us to explicitly separate topology (i.e., gluing data) from geometry (i.e., parametrizations).

We can also use another kind of parametric surface for defining the ψ_{v} 's. We opted for the simplest maps that could give us a C^{∞}-surface. Depending on the purpose, there may be better options, such as B-splines, beta-splines, box-splines, polar splines, etc.

Some of the above choices for the map ψ_{v} may yield C^{k}-surfaces only, for a small positive integer k, which may be enough for many applications you might be interested in.

Parametric Pseudo-Manifolds

Pause for a Commercial

http://www.cis.upenn.edu/~jean/geomcs-v2.pdf

