

Introduction to Computational Manifolds and Applications

Part 1 - Constructions

Prof. Marcelo Ferreira Siqueira

mfsiqueira@dimap.ufrn.br

Departmento de Informática e Matemática Aplicada Universidade Federal do Rio Grande do Norte Natal, RN, Brazil

Building Parametrizations

Recall the big picture...

Building Parametrizations

We've learned how to build a set of gluing data using distinct choices of transition maps.

Building Parametrizations

Our goal now is to learn how to build a family, $(\theta_i)_{i \in I}$, of parametrizations.

Building Parametrizations

We'll define the parametrizations for one set of gluing data showed in the previous lecture.

Building Parametrizations

Building Parametrizations

To define $(\theta_v)_{v \in I}$, we specify a family of *shape functions* and a family of *bump functions*:

 $(\psi_v)_{v\in I}$ and $(\gamma_v)_{v\in I}$.

More specifically, for each $v \in I$, we define the *shape function*,

$$\psi_v: \Box_v \subseteq \mathbb{E}^2 o \mathbb{E}^3$$
 ,

associated with Ω_v , as the *Bézier (surface) patch of bi-degree (m, n)* given by the expression

$$\psi_{v}(p) = \sum_{0 \leq j \leq m} \sum_{0 \leq k \leq n} B_{j}^{m}(x) \cdot B_{k}^{n}(y) \cdot b_{j,k}^{v},$$

where

Building Parametrizations

• $\Box_v = [-L_v, -L_v] \times [L_v, L_v]$, with $L_v = \cos\left(\frac{\pi}{n_v}\right)$,

Building Parametrizations

• (x, y) are the coordinates of a point *p* in the local coordinates system of \Box_v ,

Building Parametrizations

• $(b_{j,k}^v) \subset \mathbb{E}^3$ are the control points of ψ_v , with $0 \le j \le m$ and $0 \le k \le n$,

Ex: m = 2 and n = 2

Building Parametrizations

• and

$$B_i^l(t) = \binom{l}{i} \cdot \left(\frac{r-t}{r-s}\right)^{l-i} \cdot \left(\frac{t-s}{r-s}\right)^i$$

is the *i*-th Bernstein polynomial of degree l over the affine frame [s, r] such that

$$s = -L_v$$
 and $r = L_v$,

for every $i \in \{0, 1, \ldots, l\}$, and

$$\sum_{0\leq j\leq m}\sum_{0\leq k\leq n}B_j^m(x)\cdot B_k^n(y)=1$$
 ,

for every $x, y \in [s, r]$.

Building Parametrizations

So, $\psi_v(p)$ is a convex combination of the control points, $b_{i,k}^v$.

Building Parametrizations

How can we define the control points of ψ_v ?

We currently use a *least squares fitting* procedure.

The idea is to compute a *large* collection, $(p_j, p'_j)_{j \in J}$, of pairs of *parameter points* and *sample points*, respectively, where the first element, p_j , is in \mathbb{E}^2 and the second, p'_j , is in \mathbb{E}^3 .

We view p'_j as the image of p_j under a *given* function, $\beta : \mathbb{E}^2 \to \mathbb{E}^3$, we wish to locally approximate using the ψ_v 's. As we shall see, there are many choices for the function β .

Building Parametrizations

However, one of the simplest choices for the function β could be a *barycentric map* that takes each parameter point, p_j , in Ω_v to a sample point, p'_j , in the star, st(v, \mathcal{K}), of v in \mathcal{K} .

Building Parametrizations

More precisely,

$$p'_j = \beta(p_j) = \beta(\lambda \cdot f_v(v) + \mu \cdot f_v(u) + \nu \cdot f_v(w)) = \lambda \cdot v + \mu \cdot u + \nu \cdot w,$$

where (λ, μ, ν) are the barycentric coordinates of the point p_j w.r.t the affine frame

$$[f_v(v), f_v(u), f_v(w)].$$

Building Parametrizations

Note that β must be piecewise defined in $|\mathcal{K}_u|$ (i.e., it varies in each triangle of \mathcal{K}_u).

Building Parametrizations

We then assemble three linear equation systems, $AX = B_l$, with l = 1, 2, 3, each of which has exactly E_v equations in $(m + 1) \times (n + 1)$ unknowns, where $m = n = n_v$.

Building Parametrizations

In our current implementation, we set $E_v = (2 \cdot n_v + 1)^2$. Observe that the value of E_v is, in general, not the same for any two *p*-domains, as it is expressed in terms of n_v .

Building Parametrizations

The linear equations of the systems $AX = B_l$, for l = 1, 2, 3, come from the equalities

$$p'_j = \psi_v(p_j) \Longrightarrow (x'_j, y'_j, z'_j) = \sum_{0 \le j \le m} \sum_{0 \le k \le n} B^m_j(x_j) \cdot B^n_k(y_j) \cdot (x^v_{j,k}, y^v_{j,k}, z^v_{j,k}),$$

for all $j \in J$, where (x_j, y_j) , (x'_j, y'_j, z'_j) , and $(x^v_{j,k}, y^v_{j,k}, z^v_{j,k})$ are the coordinates of p_j , p'_j , and $b^v_{j,k}$.

Building Parametrizations

So, $AX = B_1$ consists of E_v linear equations of the form

$$x'_j = \sum_{0 \le j \le m} \sum_{0 \le k \le n} B^m_j(x_j) \cdot B^n_k(y_j) \cdot x^v_{j,k},$$

 $AX = B_2$ consists of E_v linear equations of the form

$$y'_j = \sum_{0 \le j \le m} \sum_{0 \le k \le n} B^m_j(x_j) \cdot B^n_k(y_j) \cdot y^v_{j,k},$$

and $AX = B_3$ consists of E_v linear equations of the form

$$z'_j = \sum_{0 \le j \le m} \sum_{0 \le k \le n} B^m_j(x_j) \cdot B^n_k(y_j) \cdot z^v_{j,k}.$$

Each equation has $(n_v + 1)^2$ unknowns. So, *A* has E_v rows and $(n_v + 1)^2$ columns.

Building Parametrizations

Note that the $(n_v + 1)^2$ unknowns of $AX = B_l$ are the *l*-th coordinates of the $b_{i,k}^v$'s.

Since $E_v > (n_v + 1)^2$, the system $AX = B_1$ has more equations than unknowns. So, we compute the normal equations, $A^tAX = A^tB_1$, and then solve $A^tAX = A^tB_1$ for *X*.

 $A^{t}AX = A^{t}B_{1}$ admits a unique solution iff $A^{t}A$ has rank $(n_{v} + 1)^{2}$.

We can proceed in a similar fashion to solve $AX = B_2$ and $AX = B_3$.

Once we solve $AX = B_l$, for l = 1, 2, 3, we have the control points $b_{i,k}^v$, and thus ψ_v .

Building Parametrizations

Ultimately, we want to compute θ_v :

Building Parametrizations

Why not let $\theta_v = \psi_v$?

The main issue here is that $\theta_v(p)$ must be the same point as $\theta_u(q)$ whenever $q = \varphi_{uv}(p)$.

However, it is *extremely* unlikely that $\psi_v(p) = \psi_u(q)$ whenever $q = \varphi_{uv}(p)$.

The reason is that the control points of ψ_v and ψ_u are computed independently.

Building Parametrizations

Building Parametrizations

So, what can we do?

We will use the same resource we used for the one-dimensional case: partition of unity.

For each $v \in I$, we define the *bump function*, $\gamma_v : \mathbb{E}^2 \to \mathbb{R}$, *associated with* Ω_v such that

$$\gamma_v(p) = \gamma_v(x,y) = \xi\left(\sqrt{x^2 + y^2}\right),$$

for every $p = (x, y) \in \mathbb{E}^2$, and $\xi : \mathbb{R} \to \mathbb{R}$ is the same map ξ of the one-dimensional case.

Building Parametrizations

Building Parametrizations

Recall...

For every $t \in \mathbb{R}$, we define

$$\xi:\mathbb{R} o\mathbb{R}$$

as

$$\xi(t) = \begin{cases} 1 & \text{if } t \le H_1 \\ 0 & \text{if } t \ge H_2 \\ 1/(1+e^{2 \cdot s}) & \text{otherwise} \end{cases}$$

where H_1 , H_2 are constant, with $0 < H_1 < H_2 < 1$,

$$s = \left(\frac{1}{\sqrt{1-H}}\right) - \left(\frac{1}{\sqrt{H}}\right)$$
 and $H = \left(\frac{t-H_1}{H_2-H_1}\right)$.

Building Parametrizations

Building Parametrizations

Finally, we define

$$heta_v:\Omega_v o \mathbb{E}^3$$

as

$$\theta_{v}(p) = \frac{\sum_{z \in J_{v}(p)} (\psi_{z} \circ \varphi_{zv})(p) \cdot (\gamma_{z} \circ \varphi_{zv})(p)}{\sum_{z \in J_{v}(p)} (\gamma_{z} \circ \varphi_{zv})(p)},$$

for every $p \in \Omega_v$, where

$$J_v(p) = \{ u \in I \mid p \in \Omega_{vu} \}.$$

 $J_v(p)$ has *at least* one vertex (i.e., *v*) and *at most* 3 (i.e., *v* plus one or two others).

We can show that $\theta_v(p) = (\theta_u \circ \varphi_{uv})(p) = (\theta_w \circ \varphi_{wv})(p)$ whenever $p \in (\Omega_{vu} \cap \Omega_{vw})$.

Building Parametrizations

Building Parametrizations

If $J_v(p) = \{v\}$ then

$$\begin{split} \theta_{v}(p) &= \frac{\sum_{z \in J_{v}(p)} (\psi_{z} \circ \varphi_{zv})(p) \cdot (\gamma_{z} \circ \varphi_{zv})(p)}{\sum_{z \in J_{v}(p)} (\gamma_{z} \circ \varphi_{zv})(p)} \\ &= \frac{(\psi_{v} \circ \varphi_{vv})(p) \cdot (\gamma_{v} \circ \varphi_{vv})(p)}{(\gamma_{v} \circ \varphi_{vv})(p)} \\ &= (\psi_{v} \circ \varphi_{vv})(p) \\ &= (\psi_{v} \circ id_{\Omega_{v}})(p) \\ &= \psi_{v}(p) \,. \end{split}$$

Building Parametrizations

If
$$J_{v}(p) = \{v, u\}$$
 then

$$\theta_{v}(p) = \frac{\sum_{z \in J_{v}(p)} (\psi_{z} \circ \varphi_{zv})(p) \cdot (\gamma_{z} \circ \varphi_{zv})(p)}{\sum_{z \in J_{v}(p)} (\gamma_{z} \circ \varphi_{zv})(p)}$$

$$= \frac{(\psi_{v} \circ \varphi_{vv})(p) \cdot (\gamma_{v} \circ \varphi_{vv})(p) + (\psi_{u} \circ \varphi_{uv})(p) \cdot (\gamma_{u} \circ \varphi_{uv})(p)}{(\gamma_{v} \circ \varphi_{vv})(p) + (\gamma_{u} \circ \varphi_{uv})(p)}$$

$$= \frac{(\psi_{v} \circ \mathrm{id}_{\Omega_{v}})(p) \cdot (\gamma_{v} \circ \mathrm{id}_{\Omega_{v}})(p) + (\psi_{u} \circ \varphi_{uv})(p) \cdot (\gamma_{u} \circ \varphi_{uv})(p)}{(\gamma_{v} \circ \mathrm{id}_{\Omega_{v}})(p) + (\gamma_{u} \circ \varphi_{uv})(p)}$$

$$= \frac{\psi_{v}(p) \cdot \gamma_{v}(p) + (\psi_{u} \circ \varphi_{uv})(p) \cdot (\gamma_{u} \circ \varphi_{uv})(p)}{\gamma_{v}(p) + (\gamma_{u} \circ \varphi_{uv})(p)}.$$

Building Parametrizations

If $J_v(p) = \{v, u, w\}$ then

$$\begin{aligned} \theta_{v}(p) &= \frac{\sum_{z \in J_{v}(p)} (\psi_{z} \circ \varphi_{zv})(p) \cdot (\gamma_{z} \circ \varphi_{zv})(p)}{\sum_{z \in J_{v}(p)} (\gamma_{z} \circ \varphi_{zv})(p)} \\ &= \frac{(\psi_{v} \circ \varphi_{vv})(p) \cdot (\gamma_{v} \circ \varphi_{vv})(p) + (\psi_{u} \circ \varphi_{uv})(p) \cdot (\gamma_{u} \circ \varphi_{uv})(p) + (\psi_{w} \circ \varphi_{wv})(p) \cdot (\gamma_{w} \circ \varphi_{wv})(p)}{(\gamma_{v} \circ \varphi_{vv})(p) + (\gamma_{u} \circ \varphi_{uv})(p) + (\gamma_{w} \circ \varphi_{wv})(p)} \\ &= \frac{(\psi_{v} \circ \mathrm{id}_{\Omega_{v}})(p) \cdot (\gamma_{v} \circ \mathrm{id}_{\Omega_{v}})(p) + (\psi_{u} \circ \varphi_{uv})(p) \cdot (\gamma_{u} \circ \varphi_{uv})(p) + (\psi_{w} \circ \varphi_{wv})(p)}{(\gamma_{v} \circ \mathrm{id}_{\Omega_{v}})(p) + (\gamma_{u} \circ \varphi_{uv})(p) + (\gamma_{w} \circ \varphi_{wv})(p)} \\ &= \frac{\psi_{v}(p) \cdot \gamma_{v}(p) + (\psi_{u} \circ \varphi_{uv})(p) \cdot (\gamma_{u} \circ \varphi_{uv})(p) + (\psi_{w} \circ \varphi_{wv})(p)}{\gamma_{v}(p) + (\gamma_{u} \circ \varphi_{uv})(p) + (\gamma_{w} \circ \varphi_{wv})(p)}. \end{aligned}$$

Building Parametrizations

In

$$\theta_{v}(p) = \frac{\sum_{z \in J_{v}(p)} (\psi_{z} \circ \varphi_{zv})(p) \cdot (\gamma_{z} \circ \varphi_{zv})(p)}{\sum_{z \in J_{v}(p)} (\gamma_{z} \circ \varphi_{zv})(p)},$$

the term

 $(\psi_z \circ \varphi_{zv})(p)$

can be viewed as the *contribution* of ψ_z to $\theta_v(p)$, which is weighted by $(\gamma_z \circ \varphi_{zv})(p)$.

A key observation for the proof of consistency: if $w \in J_v(p)$ then $J_w(\varphi_{wv}(p)) = J_v(p)$.

All functions involved in the definition of θ_v are C^{∞} .

Finally, our surface is defined as $\bigcup_{v \in I} \theta_v(\Omega_v)$.

Building Parametrizations

There is only one issue with the construction of *S*: the sample points, p'_{j} , were located in the surface $|\mathcal{K}|$, which is piecewise-linear. As a result, *S* will *look* piecewise-linear too!

To improve the visual quality of *S*, we define the parametrization θ_v as a local approximation for a "curved" geometry. In order to do so, we assume that a parametric surface, say *S'*, has been defined over the simplicial surface, *K*. There are many choices!

Two simple choices are:

- PN triangles
- Subdivision surfaces

Building Parametrizations

Regardless of the choice of S', we assume that S' is a union of parametric patches given by

$$b_{\sigma}: riangle \subset \mathbb{E}^2 o \mathbb{E}^3$$
 ,

where each b_{σ} is associated with a triangle σ of \mathcal{K} and is defined on a triangle, $\triangle \subset \mathbb{E}^2$; i.e,

$$S' = \bigcup_{\sigma \in \mathcal{K}^{(2)}} b_{\sigma}(\Delta) \,.$$

Building Parametrizations

Suppose that $\sigma = [v, u, w]$.

Building Parametrizations

After sampling Ω_v , we map the points p_j inside the triangle $[f_v(v), f_v(u), f_v(w)]$ to the triangle \triangle using a barycentric map, say b, and then we compute the points $p'_j = (b_\sigma \circ b)(p_j)$.

Building Parametrizations

After sampling Ω_v , we map the points p_j inside the triangle $[f_v(v), f_v(u), f_v(w)]$ to the triangle \triangle using a barycentric map, say b, and then we compute the points $p'_j = (b_\sigma \circ b)(p_j)$.

So, our *given* function β can be piecewise defined as $\beta = b_{\sigma} \circ b$ in each *p*-domain.

Building Parametrizations

Once we have the pairs (p_j, p'_j) for each *p*-domain Ω_v , we can proceed as before to compute the control points of ψ_v , which is a Bézier surface patch of bi-degree (n_v, n_v) .

However, since we locally approximate the shape of a "curved" geometry (i.e., the surface $S' = \bigcup_{\sigma \in \mathcal{K}^{(2)}} b_{\sigma}(\Delta)$), our surface, $S = \bigcup_{v \in I} \theta_v(\Omega_v)$, has a curved geometry too.

More specifically, the shape of *S* is very similar to the shape of *S'*, but *S* is smooth (i.e., C^{∞}) regardless of the degree of smoothness of the surface *S'*, which should be at least C^{0} .

Let us see some examples...

Examples

simplicial surface \mathcal{K}

Examples

PN triangle

Examples

surface *S*

Examples

Loop subdivision surface

Examples

surface S

Examples

simplicial surface \mathcal{K}

Examples

PN triangle

Examples

surface S

Examples

Loop subdivision surface

Examples

surface S

Examples

simplicial surface \mathcal{K}

Examples

PN triangle

Examples

surface S

Examples

Loop subdivision surface

Examples

surface S

Examples

simplicial surface \mathcal{K}

Examples

PN triangle

Examples

surface S

Examples

Examples

surface S

Concluding Remarks

We can play with many choices for the function $\beta = b_{\sigma} \circ b$. But, keep in mind that we can only do so because the manifold-based approach for surface construction allows us to explicitly separate topology (i.e., gluing data) from geometry (i.e., parametrizations).

We can also use another kind of parametric surface for defining the ψ_v 's. We opted for the simplest maps that could give us a C^{∞} -surface. Depending on the purpose, there may be better options, such as B-splines, beta-splines, box-splines, polar splines, etc.

Some of the above choices for the map ψ_v may yield C^k -surfaces only, for a small positive integer k, which may be enough for many applications you might be interested in.

Pause for a Commercial

http://www.cis.upenn.edu/~jean/geomcs-v2.pdf