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Abstract. We present a two-step camera calibration process based on linear least squares formulations.  We show how to apply this process to build an integrated modeling environment, in which a scene is modeled by having the user specify, on a given image, a set of reference points (used for camera calibration) and object points (used for positioning the objects in the scene).  Once this has been done, synthetic information can be superimposed onto the image and arbitrary views can be produced.
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1.

Introduction

In this paper we present a technique for integrating information given by a image containing known reference points into a geometric modeling system.  Examples of applications are certain modeling systems used in the broadcasting of sport events.  In such systems, a tridimensional model of the scene is built from images, with the purpose of checking whether a given play was legal or obtaining other views of the same scene (as seen by one of the players, for instance).

The techniques proposed here are based in calibrating appropriately the camera that took the picture.  This means finding a transformation T that describes how points in the 2D image are obtained from the corresponding points in the 3D scene.  Finding the 3D positions of the objects in the scene, using the corresponding points in the image, involves inverting this transformation.  Since T maps 3D space into 2D space, this requires using additional conditions.  In our case, for instance, we use the fact that most objects lie on the field of play.  Once the objects are located in the 3D scene, one can change the visualization parameters, in order to place the camera in the desired position.

We assume that the user specifies both the reference points used for calibration and the points used for positioning the objects.  User-assisted methods for image based modeling have been studied in papers such as [Debevec].

The main contribution of our paper is a new 2-step technique of camera calibration using linear least square methods.

2.
Camera calibration

Calibrating a camera consists in, given a sample of N points Mi = (xi, yi, zi) in 3D-space and their corresponding projections mi = (ui, vi) in the image, finding a camera which is compatible with such a sample.  This involves determining the geometric (position, orientation) and optical parameters (lenses) of the camera.

In this paper, we consider images from TV broadcasting of soccer games, as the one shown in Fig. 1.  The image shows several points of the field of play that have relative positions specified by the game regulations, as shown in Fig. 2.  Corresponding points in the two images provide the sample for camera calibration.

The set of parameters to take into account for camera calibration depends on the particular camera model.  The simplest model is of a camera with no lenses, in which the image is obtained by projecting the object onto a planar screen through a “pin-hole” (the optical center of the camera).  This model is adequate for our purposes, since our goal is to integrate image information into a modeling environment where rendering is done using a simple synthetic camera that follows the same model.

[image: image1.jpg]



Fig. 1 – An image from a soccer game

[image: image2.png]



Fig. 2 – The field of play

The calibration method used in this paper is a modification of the method given in [Faugeras], which is briefly explained below.

Let us consider a tridimensional coordinate system CXYZ, with its origin at the optical center of the camera, its Z axis perpendicular to the plane where the image is formed and its X and Y axis parallel to the edges of the image, as shown in Fig. 3.  Projecting such a system onto the image plane induces a bidimensional coordinate system C’X’Y’ in that plane.  Relative to these coordinate systems, the perspective projection (X’, Y’) of a point 
(X, Y, Z) space is given by 

X’= fX/Z

Y’= fY/Z
(1)

where f is the distance between the optical center of the camera and the image plane.
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Fig. 3 – Pin-hole camera model

In a camera calibration problem, however, camera position and orientation are unknown.  The reference points are given in a reference system that is not associated with the camera and the corresponding image points are usually specified in pixel units.  Therefore, the transformation from 3D to image coordinates involves three steps: the conversion from a general coordinate system Oxyz to the camera-based system CXYZ (which is described a translation followed by rotation); the perspective projection itself, given by (1); and, finally, the conversion, in the image plane, from the C’X’Y’ system to the pixel-based system Puv (which consists of a translation followed by scaling along each axis).  An expression for a general camera results from concatenating those three transformations. Using homogeneous coordinates, the position [u, v, w] in the image corresponding to point  [x, y, z, 1] in 3D space is given by [Faugeras]:
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(2)

where r1, r2 and r3 determine a orthonormal basis for (3.

This model includes non-linear relationships involving the camera parameters.  This presents disadvantages, when compared to a linear model formulation.  In particular, one needs to use iterative solution methods, whereas closed expressions are available for linear models.  As an alternative, one may use a more general model, given by a generic projective transformation of the form:
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(3)

It should be stressed that equation (3) above describes a more general transformation than the one induced by a camera.  In order to represent a true camera, it must satisfy the following (nonlinear) condition ([Faugeras]):
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(4)

For many purposes, however, the camera model given by (3) is appropriate.  In our method, it will provide a first approximation for the camera.

3.
Linear method for camera calibration

Let us consider the problem of finding a matrix

Q = 
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that associates, through equation (3), each sample point Mi to its respective image mi.  All scalar multiples of Q determine the same transformation.  Thus, finding Q involves 11 independent parameters.  This immediately shows that at least 6 points are needed to determine Q.  It is also necessary that these points be in “general position”, a notion which is made precise in [Faugeras].  It requires, for instance, that the 6 points do not lie on the same plane.  In our case, this implies that at least one the reference points  must not lie on the field (the top corners of the goal posts are used for this purpose).

Determining Q requires solving the system given by the following linear equations:

q1MI + q14 = ui (q3Mi + q34) 

q2MI + q24 = vi (q3Mi + q34)
(i = 1, …, N)
(5)

In general, (5) has no solution and has to be solved in a least squares sense.  That is, Q is determined in such a way as to minimize the sum of the square errors obtained by comparing the sample image points with the image, 
by (3), of the corresponding space points.

Ideally, one should minimize the total error given by
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(6)

where m'i = (u'i, v'i) is the image of Mi by the projective transformation given by Q.  That is: 
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(7)

However, the resulting least squares problem is nonlinear.  To reduce computational effort, we may consider solving, instead, the problem of minimizing the total square error in equations (5), which is given by:
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(8)

This problem has the trivial solution Q = 0.  This comes from the fact that all matrices of the form Q, where Î(, give the same projective transformation.  Thus, it is necessary to add a normalization constraint.  [Faugeras] suggests using the constraint ||q3|| = 1.  The result is a nonlinear constrained minimization problem that can be solved by eigenvalue methods.

In the next sections we present a modified calibration method that uses exclusively linear least squares and that yields a true camera, through a second calibration step.

4.
First calibration step

The first step in our method consists of minimizing (8), but adding a linear constraint instead of the nonlinear constraint ||q3|| = 1.  If we were truly minimizing (6), all such normalizations would be equivalent, since scalar multiples of Q give the same projective transformation.  In the linear version, however, different normalizations lead to different estimates for Q.

We adopt the constraint 


q3M' + q34 = 1,

where M’ is the centroid of the sample points Mi.

The idea behind this choice is setting the denominator of the projective transformation to 1 for a “typical” point of the scene.  Since the remaining points are not to far from their centroid, one may expect that the error incurred when using the linear model instead of the nonlinear one will not be too serious.

Therefore, the problem to solve is of the form:


Min
|| Aq ||


subject to
aTq = 1,

where a and q are 12 ´ 1 vectors and  A is a 2N ´ 12 matrix, built from the sample points.

The problem can be solved using Lagrange multipliers, leading to the following linear system:


[image: image15.wmf]î

í

ì

=

=

-

1

0

q

a

a

Aq

A

T

T

l


where  is the Lagrange multiplier associated with the linear constraint.

The quality of the resulting estimate Q can be improved through a sequential process.  Using Q, obtained as indicated above, we compute the denominators
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of the expressions in (7).  Next, we solve the following least squares problem:


min 
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subject to 

q3M' + q34 = 1.

This yields a second approximation for Q, and so on.  In fact, this provides a sequential linear least squares method to solve the nonlinear problem of minimizing (6).  For the type of data used in this work, however, we found that the numerical changes resulting from using this sequential improvement process were very small and the perceptual changes were pratically non existent.

The result obtained in this step, with or without the sequential optimization method, is a projective transformation that is not necessarily a camera transformation, since condition (4) was not imposed.  This may have little importance for some applications (for instance, when one just wishes to locate the players on the field).  But it has very serious implications in our case, where the results will be used to build a synthetic camera in some graphics system.  Although most of these systems allow the user to specify a camera directly through an arbitrary Q matrix (thus allowing the use of projections that do not correspond to the “pin-hole” camera model), this makes it harder to change visualization parameters in a natural way.  For instance, if the camera is moved to another position, the corresponding image may present unwanted distortions, as discussed in section 7.

The solution that we propose for this problem is using matrix Q obtained in the first step as a starting point for a restricted calibration method, as explained in the next section.

5.
Second calibration step

In this second step, we obtain a true camera (i.e, a matriz 
[image: image19.wmf]Q

 satisfying condition (4)), starting from matrix Q obtained in the previous step.  To do so, we first set the camera position and the direction orthogonal to the image plane based on information provided by Q.  Next, we readjust the camera parameters, using the same sample points, but ensuring that we have a true camera transformation.

We first find the position C = (x0, y0, z0) of the camera optical center, according to Q.  In a camera transformation, the optical center is the only point for which there is no corresponding image (proper or improper).  Our estimate for C is the point in 3D space that has the same property regarding the projective transformation given by Q.  Therefore we choose C so that the denominators in expression (7) are equal to zero, which is done by solving q3 C + q34 = 0.

In order to obtain an estimate for the camera main axis, we first determine the point on the field whose projection, according to Q, is the center of the screen.  This is the point R that has homogeneous coordinates 
[x, y, 0, w] satisfying:
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(9)

where uo and v0  are the center screen coordinates.  Vector r3, that results from normalizing R–C, is our estimate for the direction orthogonal to the image plane.

Once we have set the above parameters, the camera model given by equation (2) becomes much simpler.  First, we translate the reference systems for 3D space and for the image, moving their origins to C and to the center of the image.  In these reference systems, the coordinates of the sample points and their respective images are given by:

(
[image: image23.wmf]x

, 
[image: image24.wmf]y

, 
[image: image25.wmf]z

) =  (x –x0,  y –y0,  z–z0)   and
(10)

(
[image: image26.wmf]u

,
[image: image27.wmf]v

) = (u –u0,  v –v0 )

Now, using homogeneous coordinates, the relationship between 3D points and their images can be expressed by:
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Since r1, r2 and r3 determine an orthonormal basis, with known r3, our problem becomes one of estimating 
q1 = u and q2 = v, subject to constraints:

q1. r3 = 0
(12a)


q2 .r3 = 0
(12b)

q1 .q2 = 0
(12c)

The problem becomes simpler if we assume, in addition, that the image aspect ratio is 1 (that is, the lengths corresponding to the sides of an image pixel are equal).  Under these conditions, we have u = v, which allows avoiding the nonlinear constraint (12c).  Indeed, in this case we have q2 = r3 ´ q1.  As a consequence, the coordinates of q2 are expressed linearly in terms of the coordinates of q1.  These, in turn, may be parameterized in terms of only two components, due to constraint (12a).

Let r3 = (a, b, c).  If we designate by r and s the first two components of q1 = (s, t, w), the third component w satisfies as + bt + cw = 0.  Thus w = –(a.s + b.t)/c.  Since q2 = r3 ´ q1, its components are given by q2 = (b.w – t.c, s.c – a.w, a.t – s.b).

Using these expressions, together with the expressions in (10) and (11) we obtain the following expressions for the coordinates (u’, v’) of the image point corresponding to point (x, y, z):
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Both expressions are linear in s and t, which are the only unknown quantities in them.  Estimates for s and t can then be obtained mimimizing the error given by:
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resulting from the process provides a true camera transformation.
6.
An integrated modeling environment

As explained before, the starting point for the modeling process is an image, as the one shown in Fig. 1.  In such images, there are two classes of points that provide input for the modeling process: reference points (marked () and object points (marked +), as shown in Fig. 4.  Reference points (field markings, goal posts) have known 3D positions and are used in the camera calibration process.  Object points are used to locate objects (players, referee, and the ball) relative to the field.

[image: image36.jpg]



Fig. 4 – Reference and object points

Using the reference points, we execute the calibration process described in the previous sections.  With the information provided by the output of the process, we are able to generate a synthetic image of the soccer field, with the objects and field markings, and superimpose it to the original image.  To do so, we have to determine the visualization parameters in the graphics system to be used.  For the OpenGL ([Neider+93]) graphics library, for instance, this implies defining the camera position and the viewing frustum.

Positioning the camera involves setting the observer’s position, the view reference point and an up vector.  The observer’s position is the optical center 
C = (x0, y0, z0) found before.  The view reference point is R.  Vector q2 provides an up vector.

In order to determine the frustum, we must find the vertical viewing angle, the window aspect ratio and the near and far clipping values.  To find the viewing angle, we determine two 3D points that project onto the middle points of the top and bottom lines of the image, respectively.  That is, we determine, by solving a system of linear equations, points of the form (x, y, 0) whose projections are located at those positions.  The two points thus determined, together with the observer’s position, define the desired vertical viewing angle.  The window aspect ratio is directly given by the image dimensions and the clipping values are chosen in such a way that the entire scene is comprised in the view volume.

After establishing the viewing parameters, we can superimpose synthetic information onto the original image, as shown in Fig. 5, or generate a completely synthetic image, as shown in Fig. 6.
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Fig. 5 – Superimposing synthetic information
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Fig. 6 – A purely synthetic image

Finally, the viewing parameters can now be changed in order to provide different views of the scene, as in 
Fig. 7.
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Fig. 7 – A different view

7.
Comparing camera models

In Fig. 8 we compare the results obtained with the general projective transformation computed at the end of the first calibration step and the true camera at the end of the second step.  For each case, we exhibit an image obtained by superimposing the field markings onto the original image and a synthetic view from a different vantage point.  As one should expect, we have better adjustment between the lines on the field and their synthetic counterpart when using only the first step, since it uses a more general model.  However, the corresponding synthetic image presents severe distortions, caused by the transformation not being a true camera.  For instance, for the given observer’s position, the lines that are parallel to the goal line should be parallel in the image (as in the image produced by the true camera).  Instead, they present a vanishing point.

We also observe that neither method exactly fits the lines on the image.  This is due to distortions, caused by lenses or by the processing of the video signal.  A better adjustment to the image would result from applying methods that take into account nonlinear lens behavior ([Tsai]).  Such a camera, however, would be harder to integrate into a synthetic camera environment.

8.
Conclusions

We have described a method for camera calibration that is suitable for integrating image information into a modeling environment.  Since it uses a simple “pin-hole” camera model, it provides information that is easily used in a environment using simple synthetic cameras.  The method presented here is easily implemented, since it uses only linear least squares formulations and gives satisfactory perceptual results. 
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(a) After first step
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(b) After second step

Fig. 8 – Comparing camera models
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