Introduction to Geometric Algebra

 Extra ILeandro A. F. Fernandes laffernandes@inf.ufrgs.br

Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

Tensor representation of products

$$
\begin{aligned}
& \text { (6)国 } \\
& \text { A general multivector } \\
& k \text {-th basis blade } \\
& \downarrow \\
& \mathbf{E}_{i} \circ \mathbf{E}_{j}=\sum_{k=1}^{2^{n}} \Gamma_{i j}^{k} \mathbf{E}_{k}, \quad \forall i, j \in\left\{1,2, \cdots 2^{n}\right\}
\end{aligned}
$$

Tensor representation of products

$$
\begin{gathered}
C=\sum_{k=1}^{2^{n}} \gamma^{k} \mathbf{E}_{k} \\
C=A \circ B=\sum_{i=1}^{2^{n}} \sum_{j=1}^{2^{n}} \sum_{k=1}^{2^{n}} \alpha^{i} \beta^{j} \Gamma_{i j}^{k} \mathbf{E}_{k}
\end{gathered}
$$

The relation among the coefficients and a given product is

$$
\gamma^{k}=\sum_{i=1}^{2^{n}} \sum_{j=1}^{2^{n}} \alpha^{i} \beta^{j} \Gamma_{i j}^{k}
$$

One may use such relation to perform multivector differentiation.

Matrix notation of products

The two Jacobi matrices
of the product of multivector.

The relation among the coefficients and a given product is

$$
\gamma^{k}=\sum_{i=1}^{2^{n}} \sum_{j=1}^{2^{n}} \alpha^{i} \beta^{j} \Gamma_{i j}^{k}
$$

$$
\frac{\partial \gamma^{k}}{\partial \alpha^{i}}=\sum_{j=1}^{2^{n}} \beta^{j} \Gamma_{i j}^{k}=\Gamma_{L}(\mathrm{~b})
$$

$$
\frac{\partial \gamma^{k}}{\partial \beta^{j}}=\sum_{i=1}^{2^{n}} \alpha^{i} \Gamma_{i j}^{k}=\Gamma_{R}(\mathrm{a})
$$

The product can now be written as

$$
\mathrm{c}=\Gamma_{R}(\mathrm{a}) \mathrm{b}=\Gamma_{L}(\mathrm{~b}) \mathrm{a}
$$

where \mathbf{a}, \mathbf{b}, and \mathbf{c} are column vectors,

$$
\text { e.g., } \quad \mathrm{C}=\left[\begin{array}{llll}
\gamma^{1} & \gamma^{2} & \cdots & \gamma^{2^{n}}
\end{array}\right]^{T}
$$

