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Tensor representation of products
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Tensor representation of products
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The relation among the coefficients
and a given product is
2n 2" _ _ One may use such relation
7/1‘ — Zzal /61 l"k._ to perform multivector differentiation.
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Matrix notation of products

The two Jacobi matrices

of the product of multivector.
The relation among the coefficients
and a given product is
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The product can now be written as
c=Iy(a)b=T,(b)a
where a, b, and ¢ are column vectors,
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e.g., C:|:7/1 7/2 7/2 :|

G
L Visgraf - Summer School in Computer Graphics - 2010 4
UFRGS 0 ’ ’



