Introduction to Geometric Algebra Extra II

Leandro A. F. Fernandes laffernandes@inf.ufrgs.br

Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

Extra II

Implementation Approaches

Implementation approaches

- Isomorphic matrix algebras
- All elements become $2^{\mathrm{n}} \times 2^{\mathrm{n}}$ matrices
- The outer product and the contractions are not isomorphic to matrix algebra
- Irreducible matrix implementation
- It is like the isomorphic matrix algebra, but using smaller matrices

Implementation approaches

- Factored representation
- k-Blades and k-versors are stored as lists of k vectors
- It seems a viable for high-dimensional algebras
- Multivector representation
- 2^{n} coefficients
- The number of basic operations is quite large
- Blades and versors are sparse multivectors

Representing unit basis blades with bitmaps

Basis Blade	Index (Decimal)	Bitmap (Binary)
1	0	0000_{b}
\mathbf{e}_{1}	1	0001_{b}
\mathbf{e}_{2}	2	0010_{b}
$\mathbf{e}_{1} \wedge \mathbf{e}_{2}$	3	0011_{b}
\mathbf{e}_{3}	4	0100_{b}
$\mathbf{e}_{1} \wedge \mathbf{e}_{3}$	5	0101_{b}
$\mathbf{e}_{2} \wedge \mathbf{e}_{3}$	6	0110_{b}
$\mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{3}$	7	0111_{b}
\mathbf{e}_{4}	8	1000_{b}
\vdots	\vdots	\vdots

Geometric and outer product of basis blades in Euclidean metric

Input: coefficient ${ }_{1}$, coefficient ${ }_{2}$, bitmap , and bitmap

// Compute the sign change due to reordering
sign $=$ canonical_reordering(bitmap,$\left.~ b i t m a p_{2}\right)$
Return (sign * coefficient ${ }_{1}$ coefficient ${ }_{2}$), and bitmap

Sign change due to reordering of two basis blades into canonical order

Input: bitmap ${ }_{1}$, and bitmap 2

```
// Count the number of basis vectors swaps
sum = 0
bitmap = bitmap }>>
Bitwise "shift right"
While bitmap ! != 0 do
sum = sum + bit_count(bitmap
bitmap}=\mp@subsup{b}{1}{}\mp@subsup{b}{itmap}{1
```

End loop
$/ /$ + for even number of swaps or - for odd number of swaps
Return $(($ sum \& 1$)==0)$? $1.0:-1.0$

Extra II

Libraries and Toolkits

Libraries and tookits

- GABLE, by Dorst (Home Page)
- MATLAB learning environment
- 3-D Euclidean metric
- GA package for Maple, by Ashdown (Home Page)
- Non-degenerated signatures
- CLUCalc, by Perwass (Home Page)
- 3-D visualization and scientific calculation
- Interprets a script language called CLUScript

Libraries and toolkits

- GluCat, by Leopardi and collaborators (Home Page)
- C++ library of template classes
- Non-degenerated signatures
- Gaigen 2, by Fontijine (Home Page)
- Stand-alone application for generation GA libraries for a target language (e.g., C++, Java)
- Efficient code is achieved after some profiling and code re-generation

Libraries and toolkits

- Geometric Algebra Template Library, by Fernandes
- C++ library of template classes
- MATLAB wrapper
- Compile-time code optimization
- One of the most complete libraries
- Compilation time may be an issue
- Geometrics Ltd. (Home Page)
- Game company

