Introduction to Geometric Algebra Extra II

Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Extra II Implementation Approaches

Implementation approaches

- Isomorphic matrix algebras
 - All elements become 2ⁿ x 2ⁿ matrices
 - The outer product and the contractions are not isomorphic to matrix algebra
- Irreducible matrix implementation
 - It is like the isomorphic matrix algebra, but using smaller matrices

Implementation approaches

- Factored representation
 - k-Blades and k-versors are stored as lists of k vectors
 - It seems a viable for high-dimensional algebras
- Multivector representation
 - 2ⁿ coefficients
 - The number of basic operations is quite large
 - Blades and versors are sparse multivectors

Representing unit basis blades with bitmaps

Basis Blade	Index (Decimal)	<u>Bitmap (Binary)</u>
1	0	0000 _b
\mathbf{e}_1	1	0001 _b
e ₂	2	0010 _b
$\mathbf{e}_1 \wedge \mathbf{e}_2$	3	0011 _b
e ₃	4	0100 _b
$\mathbf{e}_1 \wedge \mathbf{e}_3$	5	0101 _b
$\mathbf{e}_2 \wedge \mathbf{e}_3$	6	0110 _b
$\mathbf{e}_1 \wedge \mathbf{e}_2 \wedge \mathbf{e}_3$	7	0111_{b}
\mathbf{e}_4	8	1000_{b}
• •	•	•

Sign change due to reordering of two basis blades into canonical order

Input: bitmap₁, and bitmap₂

// Count the number of basis vectors swaps sum = 0

 $bitmap_1 = bitmap_1 >> 1$ Bitwise "shift right"

While bitmap₁ != 0 do

sum = sum + bit count(bitmap₁ & bitmap₂)

```
bitmap_1 = bitmap_1 >> 1
```

End loop

// + for even number of swaps or - for odd number of swaps
Return ((sum & 1) == 0) ? 1.0 : -1.0

Extra II Libraries and Toolkits

Libraries and tookits

• GABLE, by Dorst (Home Page)

- MATLAB learning environment
- 3-D Euclidean metric
- GA package for Maple, by Ashdown (<u>Home Page</u>)
 Non-degenerated signatures
- CLUCalc, by Perwass (<u>Home Page</u>)
 - 3-D visualization and scientific calculation
 - Interprets a script language called CLUScript

Libraries and toolkits

GluCat, by Leopardi and collaborators (<u>Home Page</u>)

- C++ library of template classes
- Non-degenerated signatures
- Gaigen 2, by Fontijine (Home Page)
 - Stand-alone application for generation GA libraries for a target language (*e.g.*, C++, Java)
 - Efficient code is achieved after some profiling and code re-generation

Libraries and toolkits

• Geometric Algebra Template Library, by Fernandes

- C++ library of template classes
- MATLAB wrapper
- Compile-time code optimization
- One of the most complete libraries
- Compilation time may be an issue

Geometrics Ltd. (<u>Home Page</u>)
Game company

