Introduction to Geometric Algebra Lecture I

Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Geometric problems

- Geometric data
 - Lines, planes, circles, spheres, etc.
- Transformations
 - Rotation, translation, scaling, etc.
- Other operations
 - Intersection, basis orthogonalization, etc.

• Linear Algebra is the standard framework

Using vectors to encode geometric data

Directions

• Points

Using vectors to encode geometric data

Directions

 $\mathbf{d} = -0.8 \ x + 0.3 \ y + 0.5 \ z$

• Points

Drawback

The semantic difference between a direction vector and a point vector is not encoded in the vector type itself.

R. N. Goldman (1985), Illicit expressions in vector algebra, ACM Trans. Graph., vol. 4, no. 3, pp. 223–243.

Straight lines

- Point vector
- Direction vector

Straight lines

- Point vector
- Direction vector
- Planes
 - Normal vector
 - Distance from origin

Straight lines

- Point vector
- Direction vector

• Planes

- Normal vector
- Distance from origin
- Spheres
 - Center point
 - Radius

Straight lines

- Point vector
- Direction vector

• Planes

- Normal vector
- Distance from origin

• Spheres

- Center point
- Radius

Drawback

The factorization of geometric elements prevents their use as computing primitives.

Intersection of two geometric elements

• A specialized treatment for each pair of elements

- Straight line × Straight line
- Straight line × Plane
- Straight line × Sphere
- Plane × Sphere
- etc.
- Special cases must be handled explicitly
 - e.g., Straight line × Straight line may return
 - Empty set
 - Point
 - Straight line

Intersection of two geometric elements

• A specialized treatment for each pair of elements

- Straight line × Straight line
- Straight line × Plane
- Straight line × Sphere
- Plane × Sphere
- etc.
- Special cases must
 - e.g., Straight line >
 - Empty set
 - Point
 - Straight line

Plücker Coordinates

Linear Algebra Extension

- An alternative to represent flat geometric elements
- Points, lines and planes as elementary types
- Allow the development of more general solution
- Not fully compatible with transformation matrices

Using matrices to encode transformations

Drawbacks of transformation matrices

 Non-uniform scaling affects point vectors and normal vectors differently

Drawbacks of transformation matrices

- Non-uniform scaling affects point vectors and normal vectors differently
- Rotation matrices
 - Not suitable for interpolation
 - Encode the rotation axis and angle in a costly way

Drawbacks of transformation matrices

- Non-uniform scaling affects point vectors and normal vectors differently
- Rotation matrices
 - Not suitable for interp
 - Encode the rotation a

Quaternion

- Represent and interpolate rotations consistently
- Can be combined with isotropic scaling
- Not well connected with other transformations
- Not compatible with Plücker coordinates
- Defined only in 3-D

W. R. Hamilton (1844) On a new species of imaginary quantities connected with the theory of quaternions. In Proc. of the Royal Irish Acad., vol. 2, pp. 424-434.

Linear Algebra

- Standard language for geometric problems
- Well-known limitations
- Aggregates different formalisms to obtain complete solutions
 - Matrices
 - Plücker coordinates
 - Quaternions
- Jumping back and forth between formalisms requires custom and ad hoc conversions

Geometric Algebra

- High-level framework for geometric operations
- Geometric elements as primitives for computation
- Naturally generalizes and integrates
 - Plücker coordinates
 - Quaternions
 - Complex numbers
- Extends the same solution to
 - Higher dimensions
 - All kinds of geometric elements

Lecture I **Outline**

Outline for this week

Lecture I – Mon, January 11

- Subspaces
- Multivector space
- Some non-metric products
- Lecture II Tue, January 12
 - Metric spaces
 - Some inner products
 - Dualization and undualization
- Lecture III Fri, January 15
 - Duality relationships between products
 - Blade factorization
 - Some non-linear products

Outline for next week

Lecture IV – Mon, January 18

- Geometric product
- Versors
- Rotors
- Lecture V Tue, January 19
 - Models of geometry
 - Euclidean vector space model
 - Homogeneous model
- Lecture VI Fri, January 22
 - Conformal model
 - Concluding remarks

Reference material (on-line available)

 Geometric Algebra: A powerful tool for solving geometric problems in visual computing
 L. A. F. Fernandes – M. M. Oliveira
 Tutorials of Sibgrapi (2009)

- Geometric Algebra: a Computational Framework for Geometrical Applications, Part 1
 L. Dorst – S. Mann
 IEEE Computer Graphics and Applications, 22(3):24-31 (2002)
- Geometric Algebra: a Computational Framework for Geometrical Applications, Part 2
 S. Mann – L. Dorst IEEE Computer Graphics and Applications, 22(4):58-67 (2002)

Reference material (books)

Geometric algebra for computer science L. Dorst – D. Fontijne – S. Mann Morgan Kaufmann Publishers (2007)

Geometric algebra with applications in engineering

C. Perwass Springer Publishing Company (2009)

Geometric computing with Clifford algebras G. Sommer Springer Publishing Company (2001)

Lecture I Subspaces

A vector space consists, by definition, of elements called vectors

$$\{ {f e}_1, {f e}_2, {f e}_3 \}$$
 is a basis for ${\mathbb R}^3$

Vector in a vector space

$$\mathbf{a} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \alpha_3 \mathbf{e}_3$$

$$ig\{ {f e}_1^{}, {f e}_2^{}, {f e}_3^{}ig\}$$
 is a basis for ${\mathbb R}^3$

Spanning subspaces

The resulting subspace is a primitive for computation!

$$\mathbf{C}_{\langle 2\rangle} = \mathbf{a} \wedge \mathbf{b}$$

Geometric Meaning

The subspace spanned by vectors **a** and **b**

k-D oriented subspaces

• *k*-D oriented subspaces (or *k*-blades) are built as the outer product of *k* vectors spanning it, for $0 \le k \le n$

$\mathbf{B}_{\langle 0 \rangle} = \boldsymbol{\beta}$	0-blade
$\mathbf{B}_{\langle 1 \rangle} = \mathbf{b}$	1-blade
$\mathbf{B}_{\langle 2 \rangle} = \mathbf{b}_1 \wedge \mathbf{b}_2$	2-blade
$\mathbf{B}_{\langle 3 \rangle} = \mathbf{b}_1 \wedge \mathbf{b}_2 \wedge \mathbf{b}_3$	3-blade
$\mathbf{B}_{\langle n \rangle} = \mathbf{b}_1 \wedge \mathbf{b}_2 \wedge \cdots \wedge \mathbf{b}_n$	<i>n</i> -blade

Attitude The equivalence class $\alpha \mathbf{B}_{\langle k \rangle}$, for any $\alpha \in \mathbb{R}$

AttitudeThe equivalence class $\alpha \mathbf{B}_{\langle k \rangle}$, for any $\alpha \in \mathbb{R}$ WeightThe value of α in $\mathbf{B}_{\langle k \rangle} = \alpha \mathbf{J}_{\langle k \rangle}$, where $\mathbf{J}_{\langle k \rangle}$ is a reference blade with the same attitudeas $\mathbf{B}_{\langle k \rangle}$

Attitude The equivalence class $\alpha \mathbf{B}_{\langle k \rangle}$, for any $\alpha \in \mathbb{R}$

Weight The value of α in $\mathbf{B}_{\langle k \rangle} = \alpha \mathbf{J}_{\langle k \rangle}$, where $\mathbf{J}_{\langle k \rangle}$ is a reference blade with the same attitude as $\mathbf{B}_{\langle k \rangle}$

Orientation The sign of the weight relative to $\mathbf{J}_{\langle k \rangle}$

Attitude The equivalence class $\alpha \mathbf{B}_{\langle k \rangle}$, for any $\alpha \in \mathbb{R}$

Weight The value of α in $\mathbf{B}_{\langle k \rangle} = \alpha \mathbf{J}_{\langle k \rangle}$, where $\mathbf{J}_{\langle k \rangle}$ is a reference blade with the same attitude as $\mathbf{B}_{\langle k \rangle}$

Orientation The sign of the weight relative to $\mathbf{J}_{\langle k \rangle}$

Direction The combination of attitude and orientation

We need a basis for k-D subspaces

n-D Vector Space

 \mathbb{R}^{n}

consists of 1-D elements called vectors, in the basis

 $\{\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_{n-1}, \mathbf{e}_n\}$

 2^{n} -D Multivector Space

can handle *k*-D elements, for $0 \le k \le n$

It is not enough!

Basis for multivector space $\bigwedge \mathbb{R}^3$

Multivectors

• Basis for multivector space $\bigwedge \mathbb{R}^3$

Iultivector

$$M = \alpha_{1}$$

$$+ \alpha_{2} \mathbf{e}_{1} + \alpha_{3} \mathbf{e}_{2} + \alpha_{4} \mathbf{e}_{3}$$

$$+ \alpha_{5} \mathbf{e}_{1} \wedge \mathbf{e}_{2} + \alpha_{6} \mathbf{e}_{1} \wedge \mathbf{e}_{3} + \alpha_{7} \mathbf{e}_{2} \wedge \mathbf{e}_{3}$$

$$+ \alpha_{8} \mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{3}$$

Definition issues

Multivector The weighted combination of basis elements of $\bigwedge \mathbb{R}^n$

vector The weighted combination of basis elements of $\bigwedge^k \mathbb{R}^n$

k-lade The outer product of k vector factors Grade

Notable k-vectors

• Only these k-vectors are always also blades in n-D

<u>k-vector</u>	Linear Space	Special Name
0-vector	$\bigwedge^0 \mathbb{R}^n = \mathbb{R}$	scalar
1-vector	$\bigwedge^1 \mathbb{R}^n = \mathbb{R}^n$	vector
(n-1)-vector	$\bigwedge^{n-1} \mathbb{R}^n$	pseudovector
<i>n</i> -vector	$\bigwedge^n \mathbb{R}^n$	pseudoscalar

Lecture I Outer product

Properties of the outer product $\wedge: \bigwedge^{r} \mathbb{R}^{n} \times \bigwedge^{s} \mathbb{R}^{n} \to \bigwedge^{r+s} \mathbb{R}^{n}$

Antisymmetry $\mathbf{a} \wedge \mathbf{b} = -\mathbf{b} \wedge \mathbf{a}$, thus $\mathbf{c} \wedge \mathbf{c} = 0$ Scalars commute $\mathbf{a} \wedge (\beta \mathbf{b}) = \beta (\mathbf{a} \wedge \mathbf{b})$ Distributivity $\mathbf{a} \wedge (\mathbf{b} + \mathbf{c}) = \mathbf{a} \wedge \mathbf{b} + \mathbf{a} \wedge \mathbf{c}$ Associativity $\mathbf{a} \wedge (\mathbf{b} \wedge \mathbf{c}) = (\mathbf{a} \wedge \mathbf{b}) \wedge \mathbf{c}$

Computing with the outer product

• Basis for multivector space $\bigwedge \mathbb{R}^3$

Computing with the outer product

• Basis for multivector space $\bigwedge \mathbb{R}^3$

Antisymmetry $\mathbf{a} \wedge \mathbf{b} = -\mathbf{b} \wedge \mathbf{a}$, thus $\mathbf{c} \wedge \mathbf{b}$ Scalars commute $\mathbf{a} \wedge (\beta \mathbf{b}) = \beta (\mathbf{a} \wedge \mathbf{b})$ Distributivity $\mathbf{a} \wedge (\mathbf{b} + \mathbf{c}) = \mathbf{a} \wedge \mathbf{b} + \mathbf{a} \wedge \mathbf{c}$

Computing with the outer product

• Basis for multivector space $\bigwedge \mathbb{R}^3$

$$\mathbf{b} = \boldsymbol{\beta}_1 \, \mathbf{e}_1 + \boldsymbol{\beta}_2 \, \mathbf{e}_2 + \boldsymbol{\beta}_3 \, \mathbf{e}_3 \qquad \mathbf{C}_{\langle 2 \rangle} = \mathbf{a} \wedge \mathbf{b} = (\alpha_1 \beta_2 - \alpha_2 \beta_1) \, \mathbf{e}_1 \wedge \mathbf{e}_2 \\ + (\alpha_1 \beta_3 - \alpha_3 \beta_1) \, \mathbf{e}_1 \wedge \mathbf{e}_3 \\ + (\alpha_2 \beta_3 - \alpha_3 \beta_2) \, \mathbf{e}_2 \wedge \mathbf{e}_3$$

Lecture I The regressive product

The notion of duality

• The complementary grade of a grade k is n-k

$$\bigwedge^k \mathbb{R}^n \longleftrightarrow \bigwedge^{n-k} \mathbb{R}^n$$

The notion of duality

• The complementary grade of a grade k is n-k

$$\bigwedge^k \mathbb{R}^n \longleftrightarrow \bigwedge^{n-k} \mathbb{R}^n$$

The notion of duality

• The complementary grade of a grade k is n-k

$$\bigwedge^k \mathbb{R}^n \longleftrightarrow \bigwedge^{n-k} \mathbb{R}^n$$

• The regressive product is correctly dual to the outer product

 $\wedge \longleftrightarrow \vee$

 k-blade are also built as the regressive product of *n-k* pseudovectors

Regressive Product

Returns the subspace shared by two blades

$$\mathbf{A}_{\langle 2 \rangle} = \mathbf{a} \wedge \mathbf{c}$$
$$\mathbf{B}_{\langle 2 \rangle} = \mathbf{c} \wedge \mathbf{b}$$
for $\mathbf{I}_{\langle 3 \rangle} = \mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}$
$$\mathbf{c} = \mathbf{A}_{\langle 2 \rangle} \vee \mathbf{B}_{\langle 2 \rangle}$$

Properties of the regressive product

$$\vee: \bigwedge^{n-r} \mathbb{R}^n \times \bigwedge^{n-s} \mathbb{R}^n \to \bigwedge^{n-(r+s)} \mathbb{R}^n$$

Antisymmetry

Scalars commute Distributivity

Associativity

$$\mathbf{A}_{\langle n-1 \rangle} \vee \mathbf{B}_{\langle n-1 \rangle} = -\mathbf{B}_{\langle n-1 \rangle} \vee \mathbf{A}_{\langle n-1 \rangle},$$

thus $\mathbf{C}_{\langle n-1 \rangle} \vee \mathbf{C}_{\langle n-1 \rangle} = 0$

$$\mathbf{A}_{\langle n-1 \rangle} \vee \left(\boldsymbol{\beta} \mathbf{B}_{\langle n-1 \rangle}\right) = \boldsymbol{\beta} \left(\mathbf{A}_{\langle n-1 \rangle} \vee \mathbf{B}_{\langle n-1 \rangle}\right)$$

$$\mathbf{A}_{\langle n-1 \rangle} \vee \left(\mathbf{B}_{\langle n-1 \rangle} + \mathbf{C}_{\langle n-1 \rangle}\right) = \mathbf{A}_{\langle n-1 \rangle} \vee \mathbf{B}_{\langle n-1 \rangle} + \mathbf{A}_{\langle n-1 \rangle} \vee \mathbf{C}_{\langle n-1 \rangle}$$

$$\mathbf{A}_{\langle n-1 \rangle} \vee \left(\mathbf{B}_{\langle n-1 \rangle} \vee \mathbf{C}_{\langle n-1 \rangle}\right) = \left(\mathbf{A}_{\langle n-1 \rangle} \vee \mathbf{B}_{\langle n-1 \rangle}\right) \vee \mathbf{C}_{\langle n-1 \rangle}$$

Hermann G. Grassmann (1809-1877)

Grassmann, H. G. (1877) Verwendung der Ausdehnungslehre fur die allgemeine Theorie der Polaren und den Zusammenhang algebraischer Gebilde. J. Reine Angew. Math. (Crelle's J.), Walter de Gruyter Und Co., 84, 273-283

