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Geometric problems 

 Geometric data 

 Lines, planes, circles, spheres, etc. 

 Transformations 

 Rotation, translation, scaling, etc. 

 Other operations 

 Intersection, basis orthogonalization, etc. 

 

 Linear Algebra is the standard framework 
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Using vectors to encode geometric data 

 Directions  Points 
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Using vectors to encode geometric data 

 Directions  Points 
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Drawback 

The semantic difference between 

a direction vector and a point vector 

is not encoded in the vector type itself. 

R. N. Goldman (1985), Illicit expressions in vector algebra, 

ACM Trans. Graph., vol. 4, no. 3, pp. 223–243. 
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Assembling geometric data 

 Straight lines 

 Point vector 

 Direction vector 
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Assembling geometric data 

 Straight lines 

 Point vector 

 Direction vector 

 Planes 

 Normal vector 

 Distance from origin 
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Assembling geometric data 

 Straight lines 

 Point vector 

 Direction vector 

 Planes 

 Normal vector 

 Distance from origin 

 Spheres 

 Center point 

 Radius 
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Assembling geometric data 

 Straight lines 

 Point vector 

 Direction vector 

 Planes 

 Normal vector 

 Distance from origin 

 Spheres 

 Center point 

 Radius 
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Drawback 

The factorization of geometric elements 

prevents their use as computing primitives. 
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Intersection of two geometric elements 

 A specialized treatment for each pair of elements 

 Straight line × Straight line 

 Straight line × Plane 

 Straight line × Sphere 

 Plane × Sphere 

 etc. 

 Special cases must be handled explicitly 

 e.g., Straight line × Straight line may return 
• Empty set 

• Point 

• Straight line 
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Linear Algebra Extension 

Plücker Coordinates 

 An alternative to represent flat geometric elements 

 Points, lines and planes as elementary types 

 Allow the development of more general solution 

 Not fully compatible with transformation matrices 

J. Stolfi (1991) Oriented projective geometry.  Academic Press Professional, Inc. 
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Projective 

Affine 

Linear 

Using matrices to encode transformations 
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Similitude 

Perspective 

Rigid / Euclidean 

Isotropic Scaling 

Scaling 

Reflection 

Shear 

Translation 

Identity 

Rotation 
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Drawbacks of transformation matrices 

 Non-uniform scaling affects point vectors and 

normal vectors differently 

12 

90° > 90° 

1.5 X 
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Drawbacks of transformation matrices 

 Non-uniform scaling affects point vectors and 

normal vectors differently 

 Rotation matrices 

 Not suitable for interpolation 

 Encode the rotation axis and angle in a costly way 
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Linear Algebra Extension 

Quaternion 

 Represent and interpolate rotations consistently 

 Can be combined with isotropic scaling 

 Not well connected with other transformations 

 Not compatible with Plücker coordinates 

 Defined only in 3-D 

W. R. Hamilton (1844) On a new species of imaginary quantities connected with 

the theory of quaternions. In Proc. of the Royal Irish Acad., vol. 2, pp. 424-434. 



Visgraf - Summer School in Computer Graphics - 2010 

Linear Algebra 

 Standard language for geometric problems 

 Well-known limitations 

 Aggregates different formalisms to obtain 

complete solutions 

 Matrices 

 Plücker coordinates 

 Quaternions 

 Jumping back and forth between formalisms requires 

custom and ad hoc conversions 
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Geometric Algebra 

 High-level framework for geometric operations 

 Geometric elements as primitives for computation 

 Naturally generalizes and integrates 

 Plücker coordinates 

 Quaternions 

 Complex numbers 

 Extends the same solution to 

 Higher dimensions 

 All kinds of geometric elements 
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Outline 

Lecture I 
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Outline for this week 

 Lecture I – Mon, January 11 
 Subspaces 

 Multivector space 

 Some non-metric products 

 Lecture II – Tue, January 12 
 Metric spaces 

 Some inner products 

 Dualization and undualization 

 Lecture III – Fri, January 15 
 Duality relationships between products 

 Blade factorization 

 Some non-linear products 
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Outline for next week 

 Lecture IV – Mon, January 18 
 Geometric product 

 Versors 

 Rotors 

 Lecture V – Tue, January 19 
 Models of geometry 

 Euclidean vector space model 

 Homogeneous model 

 Lecture VI – Fri, January 22 
 Conformal model 

 Concluding remarks 
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Reference material (on-line available) 

 Geometric Algebra: A powerful tool for solving 

geometric problems in visual computing 
L. A. F. Fernandes – M. M. Oliveira 

Tutorials of Sibgrapi (2009) 

 Geometric Algebra: a Computational Framework 

for Geometrical Applications, Part 1 
L. Dorst – S. Mann 

IEEE Computer Graphics and Applications, 22(3):24-31 (2002) 

 Geometric Algebra: a Computational Framework 

for Geometrical Applications, Part 2 
S. Mann – L. Dorst 

IEEE Computer Graphics and Applications, 22(4):58-67 (2002) 
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Reference material (books) 

Geometric algebra for computer science 
L. Dorst – D. Fontijne – S. Mann 

Morgan Kaufmann Publishers (2007) 

 

Geometric algebra with applications in 

engineering 
C. Perwass 

Springer Publishing Company (2009) 

Geometric computing with Clifford algebras 
G. Sommer 

Springer Publishing Company (2001) 
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Subspaces 

Lecture I 
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Vector space 
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A vector space consists, by definition, 

of elements called vectors 
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Vector in a vector space 
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Spanning subspaces 
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Geometric Meaning 

The subspace spanned 

by vectors a and b The resulting subspace is 

a primitive for computation! 



k-D oriented subspaces 

 k-D oriented subspaces (or k-blades) are built as the 

outer product of k vectors spanning it, for 0 ≤ k  ≤ n 
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0-blade 

1-blade 

2-blade 

3-blade 

n-blade 
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Properties of subspaces 

 Attitude The equivalence class           , for any 
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Vectors with the 

same attitude 
Attitude 
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Properties of subspaces 

 Attitude The equivalence class           , for any 

 Weight The value of     in                     , where        

is a reference blade with the same attitude 

as 

28 

Reference 

Weighted vector 



Visgraf - Summer School in Computer Graphics - 2010 

Properties of subspaces 

 Attitude The equivalence class           , for any 

 Weight The value of     in                     , where        

is a reference blade with the same attitude 

as 

Orientation The sign of the weight relative to 

29 

Reference 

Positive orientation 
+ 

Negative orientation 
- 
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Properties of subspaces 

 Attitude The equivalence class           , for any 

 Weight The value of     in                     , where        

is a reference blade with the same attitude 

as 

Orientation The sign of the weight relative to 

 Direction The combination of attitude and orientation 
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Vectors with 

different directions 
Attitude 
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We need a basis for k-D subspaces 
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n-D Vector Space 2n-D Multivector Space 

consists of 1-D elements 

called vectors, in the basis 

can handle k-D elements, 

for 0 ≤ k  ≤ n 

It is not enough! 
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Basis for multivector space 
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Scalars Vector Space Bivector Space Trivector Space 
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Multivectors 

 Basis for multivector space 

 

 

 

 

 Multivector 
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Scalars Vector Space Bivector Space Trivector Space 
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Definition issues 

 Multivector The weighted combination of basis 

elements of 

 

 k-vector The weighted combination of basis 

elements of 

 

 k-blade The outer product of k vector factors 

34 

Step 

Grade 
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Notable k-vectors 

 Only these k-vectors are always also blades in n-D 

 

 k-vector Linear Space Special Name 

 

 0-vector  scalar 

 

 1-vector  vector 

 

 (n-1)-vector  pseudovector 

 

 n-vector  pseudoscalar 
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Outer product 

Lecture I 
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Properties of the outer product 

 

 

 Antisymmetry 

 Scalars commute 

 Distributivity 

 Associativity 
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Computing with the outer product 

 Basis for multivector space 
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Scalars Vector Space Bivector Space Trivector Space 
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Computing with the outer product 

 Basis for multivector space 
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Scalars Vector Space Bivector Space Trivector Space 
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Scalars Vector Space Bivector Space Trivector Space 

Computing with the outer product 

 Basis for multivector space 
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Antisymmetry 

Scalars commute 

Distributivity 
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Computing with the outer product 

 Basis for multivector space 
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Scalars Vector Space Bivector Space Trivector Space 

Antisymmetry 

Scalars commute 

Distributivity 
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Computing with the outer product 

 Basis for multivector space 
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Scalars Vector Space Bivector Space Trivector Space 
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The regressive product 

Lecture I 
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The notion of duality 

 The complementary grade of a grade k is n-k 
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Venn Diagram Venn Diagrams 



The notion of duality 

 The complementary grade of a grade k is n-k 
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The notion of duality 

 The complementary grade of a grade k is n-k 

 

 

 The regressive product is correctly dual to the 

outer product 

 

 

 k-blade are also built as the regressive product 

of n-k pseudovectors 
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Regressive Product 

 Returns the subspace shared by two blades 
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c 



Properties of the regressive product 

 

 

 Antisymmetry 

 

 Scalars commute 

 Distributivity 

 Associativity 
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Credits 
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Hermann G. Grassmann 

(1809-1877) 

Grassmann, H. G. (1877) Verwendung der Ausdehnungslehre fur die allgemeine Theorie 

der Polaren und den Zusammenhang algebraischer Gebilde. J. Reine Angew. Math. 

(Crelle's J.), Walter de Gruyter Und Co., 84, 273-283  


