Introduction to Geometric Algebra Lecture II

Leandro A. F. Fernandes laffernandes@inf.ufrgs.br

Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

Checkpoint

- Multivector space $\bigwedge \mathbb{R}^{n}$
e.g., Basis for $\bigwedge \mathbb{R}^{3}$

Checkpoint

- k-D oriented subspaces (or k-blades) as primitives

Checkpoint

- k-blades are built as
- the outer product of k vectors

Checkpoint

- k-blades are built as
- the outer product of k vectors
- the regressive product of n - k pseudovectors

Checkpoint

- Properties of subspaces

Attitude The equivalence class $\alpha \mathbf{B}_{\langle k\rangle}$, for any $\alpha \in \mathbb{R}$
Weight The value of α in $\mathbf{B}_{\langle k\rangle}=\alpha \mathbf{J}_{\langle k\rangle}$, where $\mathbf{J}_{\langle k\rangle}$ is a reference blade with the same attitude as $\mathbf{B}_{\langle k\rangle}$
Orientation The sign of the weight relative to $\mathbf{J}_{\langle k\rangle}$
Direction The combination of attitude and orientation

Checkpoint

Multivector
The weighted combination of basis elements of $\bigwedge \mathbb{R}^{n}$
(k-y yector The weighted combination of basis Step elements of $\bigwedge^{k} \mathbb{R}^{n}$
k-blade The outer product of k vector factors Grade

Today

- Lecture II - Tue, January 12
- Metric spaces
- Some inner products
- Dualization and undualization

Metric and Some Inner Products

The inner product of vectors

$$
\mathrm{a} \cdot \mathrm{~b}=Q(\mathbf{a}, \mathrm{~b})
$$

Geometric Meaning
Measures the relation between vectors \mathbf{a} and \mathbf{b}

Bilinear Form

A scalar-valued function of vectors, like in Linear Algebra

It defines a metric on the vector space
** Euclidean Metric

The inner product of vectors

$$
\mathbf{a} \cdot \mathbf{b}=\mathrm{Q}(\mathbf{a}, \mathbf{b})
$$

Geometric Meaning

Measures the relation between
vectors \mathbf{a} and \mathbf{b}

Bilinear Form

A scalar-valued function of vectors, like in Linear Algebra

It defines a metric on the vector space

$$
\mathbf{a} \cdot \mathbf{b}=d_{E}^{2}(a, b)
$$

Euclidean distance between points
** Non-Euclidean Metric!

Properties of the inner product of vectors

$$
\cdot: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Symmetry
Scalars commute
Distributivity

$$
\mathbf{a} \cdot(\beta \mathbf{b})=\beta(\mathbf{a} \cdot \mathbf{b})
$$

$$
\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}
$$

The metric matrix

- A practical way to implement the bilinear form Q
- Defines the inner product of pairs of basis vectors

$$
\mathrm{M}=\left(\begin{array}{ccc}
m_{11} & \cdots & m_{1 n} \\
\vdots & \ddots & \vdots \\
m_{n 1} & \cdots & m_{n n}
\end{array}\right)
$$

$$
m_{i j}=\mathrm{Q}\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right)
$$

The metric matrix

- A practical way to implement the bilinear form Q
- Defines the inner p

Orthogonal 3-D Euclidean Metric

$$
M=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The scalar product

All piecewise functions presented here are an abuse of notation. In practice, they are implicitly defined by the computation of the products.

$$
\mathbf{A}_{\langle r\rangle} * \mathbf{B}_{\langle s\rangle}= \begin{cases}\chi & r=s \\ 0 & r \neq s\end{cases}
$$

Geometric Meaning

Extends the inner product of vectors to subspaces having the same dimensionality

$$
\mathbf{A}_{\langle 2\rangle} * \mathbf{B}_{\langle 2\rangle}=\left\|\mathbf{A}_{\langle 2\rangle}\right\|\left\|\mathbf{B}_{\langle 2\rangle}\right\| \cos \theta
$$

Properties of the scalar product

$$
*: \bigwedge^{k} \mathbb{R}^{n} \times \bigwedge^{k} \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Symmetry

$$
\mathbf{A}_{\langle r\rangle} * \mathbf{B}_{\langle s\rangle}=\mathbf{B}_{\langle s\rangle} * \mathbf{A}_{\langle r\rangle}
$$

Scalars commute

$$
\mathbf{A}_{\langle r\rangle} *\left(\beta \mathbf{B}_{\langle s\rangle}\right)=\beta\left(\mathbf{A}_{\langle r\rangle} * \mathbf{B}_{\langle s\rangle}\right)
$$

Distributivity

$$
\mathbf{A}_{\langle r\rangle} *\left(\mathbf{B}_{\langle s\rangle}+\mathbf{C}_{\langle t\rangle}\right)=\mathbf{A}_{\langle r\rangle} * \mathbf{B}_{\langle s\rangle}+\mathbf{A}_{\langle\langle \rangle} * \mathbf{C}_{\langle t\rangle}
$$

Backward compatible for 1-blades

$$
\mathbf{a} \cdot \mathbf{b}=\mathbf{a} * \mathbf{b}
$$

Squared (reverse) norm of subspaces

$$
\left\|\mathbf{A}_{\langle k\rangle}\right\|^{2}=\mathbf{A}_{\langle k\rangle} * \tilde{\mathbf{A}}_{\langle k\rangle}
$$

Important

The norm is a metric property of subspaces, and it is conceptually different from weight

$$
\begin{array}{r}
\tilde{\mathbf{A}}_{\langle k\rangle}=(-1)^{k(k-1) / 2} \mathbf{A}_{\langle k\rangle} \\
\text { Reverse (++--++-+... pattern over } k \text {) }
\end{array}
$$

Inverse of blades

- The inverse of a blade is another blade with the same attitude, the inverse weight and, eventually, a different orientation

$$
\mathbf{A}_{\langle k\rangle}^{-1}=\frac{\tilde{\mathbf{A}}_{\langle k\rangle}}{\left\|\mathbf{A}_{\langle k\rangle}\right\|^{2}}
$$

$$
\mathbf{A}_{\langle k\rangle} \mathbf{A}_{\langle k\rangle}^{-1}=\mathbf{A}_{\langle\langle \rangle\rangle}^{-1} \mathbf{A}_{\langle k\rangle}=1
$$

$$
\begin{array}{r}
\left\|\mathbf{A}_{\langle k\rangle}\right\|^{2}= \\
\\
\\
\\
\mathbf{A}_{\langle k\rangle} * \tilde{\mathbf{A}}_{\langle k\rangle} \\
\tilde{\mathbf{A}}_{\langle k\rangle}= \\
\text { Reverse }(++-1)^{k(k-1) / 2} \mathbf{A}_{\langle k\rangle} \\
\text { Reverse) norm } \\
\\
\qquad++-\ldots \text { pattern over } k)
\end{array}
$$

The left contraction

$$
\left.\mathbf{A}_{\langle r\rangle}\right\rfloor \mathbf{B}_{\langle s\rangle}=\left\{\begin{array}{cc}
\mathbf{C}_{\langle s-r\rangle} & s \geq r \\
0 & s<r
\end{array}\right.
$$

Geometric Meaning
Remove from $\mathbf{B}_{\langle s\rangle}$ the part that is like $\mathbf{A}_{\langle r\rangle}$

Some observations

- The outcome of $\mathbf{A}_{\langle r\rangle} \downharpoonleft \mathbf{B}_{\langle s\rangle}$ represents a subspace that is contained in $\mathbf{B}_{\langle s\rangle}$

$$
\left.\left.\mathbf{A}_{\langle r\rangle} \downharpoonleft \mathbf{B}_{\langle s\rangle}=\left(\mathbf{A}_{\langle r-1\rangle}^{\prime} \wedge \mathbf{a}\right) \downharpoonleft \mathbf{B}_{\langle s\rangle}=\mathbf{A}_{\langle r-1\rangle}^{\prime}\right\lrcorner(\mathbf{a}\rfloor \mathbf{B}_{\langle s\rangle}\right)
$$

- The grade of $\mathbf{A}_{\langle r\rangle} \downharpoonleft \mathbf{B}_{\langle s\rangle}$ is $r-s$

Some observations

- The outcome of $\mathbf{A}_{\langle r\rangle} \downharpoonleft \mathbf{B}_{\langle s\rangle}$ is perpendicular to the subspace $\mathbf{A}_{\langle r\rangle}$
- For a vector \mathbf{x}, having $\mathbf{x}\rfloor \mathbf{C}_{\langle t\rangle}=0$ mean that \mathbf{x} is perpendicular to all vectors in $\mathbf{C}_{\langle t\rangle}$

Properties of the left contraction

$$
\rfloor: \bigwedge^{r} \mathbb{R}^{n} \times \bigwedge^{s} \mathbb{R}^{n} \rightarrow \bigwedge^{s-r} \mathbb{R}^{n}
$$

$$
\text { Symmetry } \left.\left.\quad \mathbf{A}_{\langle\langle r\rangle}\right\rfloor \mathbf{B}_{\langle s\rangle}=\mathbf{B}_{\langle s\rangle}\right\rfloor \mathbf{A}_{\langle\langle r)} \text {, iif } r=s
$$

Scalars commute

$$
\left.\left.\mathbf{A}_{\langle r\rangle}\right\rfloor\left(\beta \mathbf{B}_{\langle s\rangle}\right)=\beta\left(\mathbf{A}_{\langle r\rangle}\right\rfloor \mathbf{B}_{\langle s\rangle}\right)
$$

Distributivity $\left.\left.\left.\quad \mathbf{A}_{\langle\gamma\rangle}\right\lrcorner\left(\mathbf{B}_{\langle\langle \rangle}+\mathbf{C}_{\langle t\rangle}\right)=\mathbf{A}_{\langle\langle \rangle}\right\rfloor \mathbf{B}_{\langle s\rangle}+\mathbf{A}_{\langle\langle \rangle}\right\rfloor \mathbf{C}_{\langle t\rangle}$

The scalar product is a particular case of the left contraction

$$
\mathbf{A}_{\langle k\rangle} * \mathbf{B}_{\langle k\rangle}=\mathbf{A}_{\langle k\rangle} \backslash \mathbf{B}_{\langle k\rangle}
$$

Backward compatible for 1-blades

$$
\mathbf{a} \cdot \mathbf{b}=\mathbf{a} * \mathbf{b}=\mathbf{a}\rfloor \mathbf{b}
$$

Orthogonal projection of blades

Computing the orthogonal projection of a vector onto a 2-blade

Orthogonal projection of blades

- Step 1

$$
\mathbf{c}=\mathbf{a}\rfloor \mathbf{B}_{\langle 2\rangle}
$$

Orthogonal projection of blades

- Step 2

$$
\begin{aligned}
\mathbf{c} & =\mathbf{a}\rfloor \mathbf{B}_{\langle 2\rangle} \\
\mathbf{p}^{\prime} & =\mathbf{c}\rfloor \mathbf{B}_{\langle 2\rangle}
\end{aligned}
$$

Warning
The resulting vector has the same attitude of the intended result, but a different weight and orientation

Orthogonal projection of blades

- Step 2

$$
\begin{aligned}
\mathbf{c} & =\mathbf{a}\rfloor \mathbf{B}_{\langle 2\rangle} \\
\mathbf{p} & =\mathbf{c}\rfloor \mathbf{B}_{\langle 2\rangle}^{-1}
\end{aligned}
$$

By using the inverse of $\mathbf{B}_{\langle 2\rangle}$, one fixes the weight and orientation
of the resulting vector

$$
\begin{aligned}
& \mathbf{c} \subset \mathbf{B}_{\langle 2} \\
& \mathbf{p} \subset \mathbf{B}_{\langle 2}
\end{aligned}
$$

Orthogonal projection of blades

- The general case, i.e., in an arbitrary metric space

Important

The resulting blade has the same grade of the projected blade, so the input blades can not have
orthogonal factors

$$
\mathbf{P}_{\langle r\rangle} \subseteq \mathbf{B}_{\langle s\rangle}
$$

Resulting Basis

Basis orthogonalization

```
procedure orthogonal_basis \(\left(\mathbf{a}_{1}, \mathfrak{a}_{2}, \cdots, \mathbf{a}_{k}\right)\)
    \(\Rightarrow \mathrm{S} \leftarrow 1\)
    \(\Rightarrow\) for all \(i \in\{1,2, \cdots, k\}\) do
        \(\Rightarrow \mathrm{T} \leftarrow \mathrm{S} \wedge \mathrm{a}_{i}\)
        \(\Rightarrow\) if \(\|T\|^{2}=0\)
        abort / / Input vectors are dependent.
        end if
        \(\left.\Rightarrow \mathrm{n}_{i} \leftarrow \mathrm{~S}^{-1}\right\rfloor \mathrm{T}\)
        \(\Rightarrow S \leftarrow T\)
    end for
    \(\Rightarrow\) return \(\left\{\mathbf{n}_{1}, \mathbf{n}_{2}, \cdots, \mathbf{n}_{k}\right\}\)
end procedure
procedure orthogonal_basis \(\left(a_{1}, a_{2}, \cdots, a_{k}\right)\)
\(\Rightarrow \mathrm{S} \leftarrow 1\)
\(\Rightarrow\) for all \(i \in\{1,2, \cdots, k\}\) do
\(\Rightarrow \mathrm{T} \leftarrow \mathrm{S} \wedge \mathrm{a}_{i}\)
\(\Rightarrow\) if \(\|T\|^{2}=0\)
abort / / Input vectors are dependent. end if
\(\left.\Rightarrow \mathrm{n}_{i} \leftarrow \mathrm{~S}^{-1}\right\rfloor \mathrm{T}\)
\(\Rightarrow S \leftarrow T\)
```


The right contraction

$$
\mathbf{B}_{\langle s\rangle} \perp \mathbf{A}_{\langle r\rangle}=\left\{\begin{array}{cl}
\mathbf{C}_{\langle s-r\rangle} & s \geq r \\
0 & s<r
\end{array}\right.
$$

Geometric Meaning

Remove from $\mathbf{B}_{\langle s\rangle}$ the part that is like $\mathbf{A}_{\langle r\rangle}$

$$
\left.\left.\mathbf{B}_{\langle s\rangle} \backslash \mathbf{A}_{\langle\langle \rangle}=\left(\tilde{\mathbf{A}}_{\langle r\rangle}\right\rfloor \tilde{\mathbf{B}}_{\langle s\rangle}\right)^{\sim}=(-1)^{r(s+1)} \mathbf{A}_{\langle\gamma\rangle}\right\rfloor \mathbf{B}_{\langle s\rangle}
$$

Dualization and Undualization

The notion of duality

- The complementary grade of a grade k is $n-k$

$$
\bigwedge^{k} \mathbb{R}^{n} \leftrightarrow \bigwedge^{n-k} \mathbb{R}^{n}
$$

Venn Diagrams

"Taking the dual" operation

$$
\begin{gathered}
\left.\mathbf{A}_{\langle k\rangle}^{*}=\mathbf{D}_{\langle n-k\rangle}=\mathbf{A}_{\langle k\rangle}\right\rfloor \mathbf{I}_{\langle n\rangle}^{-1} \\
\mathbf{I}_{\langle n\rangle}=\mathbf{e}_{\substack{ \\
\mathbf{e}_{1}}}^{\mathbf{e}_{2} \wedge \cdots \wedge \mathbf{e}_{n}} \underbrace{\mathbf{A}_{\langle k\rangle} \subseteq \mathbf{I}_{\langle n\rangle}}_{\substack{\text { Unit Pseudoscalar }}} \begin{array}{l}
\text { Condition }
\end{array} \\
\text { Venn Diagram }
\end{gathered}
$$

Dualization, step-by-step

$$
\begin{array}{rlrl}
\mathbf{B}_{\langle 2\rangle} & =\gamma_{1} \mathbf{e}_{1} \wedge \mathbf{e}_{2}+\gamma_{6} \mathbf{e}_{1} \wedge \mathbf{e}_{3}+\gamma_{7} \mathbf{e}_{2} \wedge \mathbf{e}_{3} & \mathbf{B}_{\langle 2\rangle} & \in \bigwedge^{2} \mathbb{R}^{3} \\
\mathbf{d} & =\mathbf{B}_{\langle 2\rangle}^{*} & \mathbf{d} \in \mathbb{R}^{3}
\end{array}
$$

Dualization,

$$
\begin{aligned}
& \mathbf{d}=\mathbf{B}_{\langle 2\rangle}^{*} \\
& \left.\mathbf{d}=\mathbf{B}_{\langle 2\rangle}\right\rfloor \mathbf{I}_{\langle 3\rangle}^{-1} \\
& \left.\mathbf{d}=\left(\gamma_{1} \mathbf{e}_{1} \wedge \mathbf{e}_{2}+\gamma_{2} \mathbf{e}_{1} \wedge \mathbf{e}_{3}+\gamma_{3} \mathbf{e}_{2} \wedge \mathbf{e}_{3}\right)\right\rfloor \mathbf{I}_{\langle 3\rangle}^{-1} \\
& \mathbf{d}=+\gamma_{1}\left(\mathbf{e}_{1} \wedge \mathbf{e}_{2}\right) \mathbf{I}_{\langle 3\rangle}^{-1} \\
& \left.+\gamma_{2}\left(\mathbf{e}_{1} \wedge \mathbf{e}_{3}\right)\right\rfloor \mathbf{I}_{\langle 3\rangle}^{-1} \\
& \left.+\gamma_{3}\left(\mathbf{e}_{2} \wedge \mathbf{e}_{3}\right)\right\rfloor \mathbf{I}_{\langle 3\rangle}^{-1} \\
& \mathbf{I}_{\langle 3\rangle}^{-1}=\frac{\tilde{\mathbf{I}}_{\langle 3\rangle}}{\mathbf{I}_{\langle 3\rangle} * \tilde{\mathbf{I}}_{\langle 3\rangle}}=\tilde{\mathbf{I}}_{\langle 3\rangle} \\
& \mathbf{I}_{\langle\langle \rangle}^{-1}=\mathbf{e}_{3} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{1} \\
& \mathbf{I}_{\langle 3\rangle}^{-1}=-\mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{3} \\
& \begin{aligned}
\mathbf{d}= & \left.-\gamma_{1}\left(\mathbf{e}_{1} \wedge \mathbf{e}_{2}\right)\right\rfloor\left(\mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{3}\right) \\
& \left.-\gamma_{2}\left(\mathbf{e}_{1} \wedge \mathbf{e}_{3}\right)\right\rfloor\left(\mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{3}\right) \\
& \left.-\gamma_{3}\left(\mathbf{e}_{2} \wedge \mathbf{e}_{3}\right)\right\rfloor\left(\mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{3}\right)
\end{aligned} \\
& \mathbf{d}=+\gamma_{1} \mathbf{e}_{3}-\gamma_{2} \mathbf{e}_{2}+\gamma_{3} \mathbf{e}_{1}
\end{aligned}
$$

Dualization, step-by-step

$$
\begin{array}{rlrl}
\mathbf{B}_{\langle 2\rangle} & =\gamma_{1} \mathbf{e}_{1} \wedge \mathbf{e}_{2}+\gamma_{6} \mathbf{e}_{1} \wedge \mathbf{e}_{3}+\gamma_{7} \mathbf{e}_{2} \wedge \mathbf{e}_{3} & \mathbf{B}_{\langle 2\rangle} \in \bigwedge^{2} \mathbb{R}^{3} \\
\mathbf{d} & =\mathbf{B}_{\langle 2\rangle}^{*}=\gamma_{3} \mathbf{e}_{1}-\gamma_{2} \mathbf{e}_{2}+\gamma_{1} \mathbf{e}_{3} & \mathbf{d} \in \mathbb{R}^{3}
\end{array}
$$

Warning!

- The dual of the dual representation of a blade may not result in the direct representation of the blade

$$
\begin{aligned}
& \left(\mathbf{A}_{\langle k\rangle}^{*}\right)^{*}=\mathbf{A}_{\langle k\rangle} \text { does not hold in the general case } \\
& \left(\mathbf{A}_{\langle k\rangle}^{*}\right)^{*}=(-1)^{n(n-1) / 2} \mathbf{A}_{\langle k\rangle} \begin{array}{l}
\text { The successive application of two } \\
\text { dualization operations may change } \\
\text { the orientation of the resulting blade }
\end{array}
\end{aligned}
$$

"Taking the undual" operation

$$
\left.\mathbf{D}_{\langle n-k\rangle}^{-*}=\mathbf{A}_{\langle k\rangle}=\mathbf{D}_{\langle n-k\rangle}\right\rfloor \mathbf{I}_{\langle n\rangle}
$$

$$
\left(\mathbf{A}_{\langle k\rangle}^{*}\right)^{-*}=\mathbf{A}_{\langle k\rangle} \quad \begin{aligned}
& \text { By taking the undual, the dual representation of a } \\
& \text { blade can be correctly mapped back to its direct } \\
& \text { representation }
\end{aligned}
$$

