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Checkpoint 

Lecture III 
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Checkpoint, Lecture I 

 Multivector space 
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Scalars Vector Space Bivector Space Trivector Space 

e.g., Basis for 



Visgraf - Summer School in Computer Graphics - 2010 

Checkpoint, Lecture I 

 k-D oriented subspaces (or k-blades) as primitives 

 k-blades are built as 

 the outer product of k vectors 
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Checkpoint, Lecture I 

 k-D oriented subspaces (or k-blades) as primitives 

 k-blades are built as 

 the outer product of k vectors 

 the regressive product of 

n-k pseudovectors 
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Checkpoint, Lecture II 

 Metric spaces 

 Bilinear form               defines a metric on the 

vector space, e.g., Euclidean metric 

 Metric matrix 
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All piecewise functions presented here are an 

abuse of notation. In practice, they are implicitly 

defined by the computation of the products. 

Checkpoint, Lecture II 

 Metric spaces 

 Bilinear form               defines a metric on the 

vector space, e.g., Euclidean metric 

 Metric matrix 

 Some inner products 

 Inner product of vectors 

 Scalar product 

 Left contraction 

 Right contraction 
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The scalar product is a particular 

case of the left and right contractions 

These metric products are 

backward compatible for 1-blades 



Checkpoint, Lecture II 

 Dualization 

 

 Undualization 
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Venn Diagrams 

By taking the undual, the dual 

representation of a blade can be correctly 

mapped back to its direct representation 



Today 

 Lecture III – Fri, January 15 

 Duality relationships between products 

 Blade factorization 

 Some non-linear products 
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Duality Relationships Between 

Products 

Lecture III 
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The outer product and the left contraction 

 Duality of subspaces 

 

 Dual of the outer product 
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Universally Valid 



The outer product and the left contraction 

 Duality of subspaces 

 

 Dual of the outer product 

Visgraf - Summer School in Computer Graphics - 2010 12 

Universally Valid 



The outer product and the left contraction 

 Duality of subspaces 

 

 Dual of the outer product 
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Universally Valid 



The left contraction and the outer product 

 Duality of subspaces 

 

 Dual of the left contraction 
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Valid when 



The left contraction and the outer product 

 Duality of subspaces 

 

 Dual of the left contraction 
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Valid when 



The left contraction and the outer product 

 Duality of subspaces 

 

 Dual of the left contraction 
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Valid when 



Duality relationships between products 

 Dual of the outer product 

 

 

 Dual of the left contraction 
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The cross product incorporated 

 The cross product (in 3-D space only) as 

the dual of the outer product (universally applicable) 
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Lecture I Lecture II By replacing… 



Blade Factorization 

Lecture III 
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The blade factorization problem 

 Find, for a given blade       , a set of k vectors 

such that 
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Why one may want to factorize a blade 

• To use the factors as input to libraries 

that cannot handle blades 

• To implement another low-level algorithm 

Good News! 

We are only concerned with the 

outer product and 

consequently are allowed to 

choose any convenient metric 

e.g., Euclidean metric 



How to find the factors? 

 One may project candidate vectors     onto 

Visgraf - Summer School in Computer Graphics - 2010 21 



How to find the factors? 

 One may project candidate vectors     onto 

 

 

 

 By find k linearly independent vectors      a 

factorization of         is found (up to a scale) 
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All nonzero blades are invertible 

under Euclidean metric 



Blade factorization 
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Input nonzero blade 

and k > 0 

By assuming Euclidean metric… 

• The algorithm also works for null blade in 

the actual metric 

• The output is a scalar value and a set 

of orthonormal factors in Euclidean metric 



The Meet and Join of Blades 

Lecture III 
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The meet and join of blades 
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Geometric Meaning 

The geometric version of intersection 
and union from set theory. 

Meet of Blades Join of Blades 

Venn Diagrams 



The meet and join of blades 
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m 

Common Subspace 



The meet and join of blades 
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γ 

Common Subspace 



Relationships between meet and join 
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Don’t worry about the inverse, because 
meet and join are independent 

of the particular metric 



Relationships between meet and join 
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This is not the dual relative to the 

pseudoscalar        of the total space, but 

of the pseudoscalar              within 

which the problem resides. 29 



The Delta Product of Blades 

Lecture III 
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The delta product of blades 
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Geometric Meaning 

The symmetric difference 

of the factors in         and        . 

Venn Diagrams 



Computing the grade of the meet and join 
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Meet 

Join 

Delta 

? 

? 

Venn Diagrams 



Tests for containment 
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This test returns true if and only if the vector                 . 

This test returns true if and only if                      . 



Tests for containment 
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OK 

Venn Diagrams 



Computing the Meet and Join 

of Blades 

Lecture III 
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Some observations 

 Potential factors of the meet 

 They are factors of both input blades 

 They are not factors of the delta product 
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Delta 

Venn Diagrams 

Meet 

How the algorithm works 

It starts with a scalar, and build the common 

subspace by the outer product of potential 

factors until it arrives at the true meet. 



Some observations 
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 Factors that should not be in the join 

 They are not factors of the input blades 

 They are factors of the dual of the delta product 
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Venn Diagrams 

Dual of Delta Dual of Join 

How the algorithm works 

It starts with a pseudoscalar, and remove 

factors from it until the true join is obtained. 



Dual of Delta 

The algorithm 

1. Input: blades        and        , where 

2. Compute the dual of the delta product 

and factorize it in factors 

3. Set              and 

4. For each of the factors     : 

a. Compute the projection                                    and the rejection 

b. For             ,                         . If the grade of       is the required grade of the 

meet, then compute the join and break the loop. Otherwise continue with 

c. For            ,                   . If the grade of     is the required grade of the join, then 

computer the meet from the join and break the loop. Otherwise continue with 

5. Output: blades      and 

Visgraf - Summer School in Computer Graphics - 2010 38 

Swap input blades when it is necessary. 

This may engender an extra sign:                      

The rejection is a vector that 

is perpendicular to        . 



Efficient factorization and join of blades 

 

 

 

 

 5 to 10 times faster than earlier algorithms 

 The factors are linearly independents, but they are 

not orthogonal in general 

 Remeber: the meet can be computed from the join 
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