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Checkpoint 

Lecture IV 
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Checkpoint, Lecture I 

 Multivector space 

 Non-metric products 

 The outer product 

 The regressive product 
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Checkpoint, Lecture II 

 Metric spaces 

 Bilinear form               defines a metric on the 

vector space, e.g., Euclidean metric 

 Metric matrix 

 Some inner products 

 Inner product of vectors 

 Scalar product 

 Left contraction 

 Right contraction 
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The scalar product is a particular 

case of the left and right contractions 

These metric products are 

backward compatible for 1-blades 



Checkpoint, Lecture II 

 Dualization 

 

 Undualization 
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Venn Diagrams 

By taking the undual, the dual 

representation of a blade can be correctly 

mapped back to its direct representation 



Checkpoint, Lecture III 

 Duality relationships between products 

 Dual of the outer product 

 

 

 

 Dual of the left contraction 
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Checkpoint, Lecture III 

 Some non-linear products 

 Meet of blades 

 

 

 Join of blades 

 

 

 Delta product of blades 
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Today 

 Lecture IV – Mon, January 18 

 Geometric product 

 Versors 

 Rotors 
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Geometric Product 

Lecture IV 

9 



Visgraf - Summer School in Computer Graphics - 2010 

Geometric product of vectors 
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Inner Product Outer Product 

Unique Feature 

An invertible product for vectors! 

Denoted by a white space, like 

standard multiplication 
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Geometric product of vectors 
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Unique Feature 

An invertible product for vectors! 

The Inner Product is not Invertible 

γ 

** Euclidean Metric 
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Unique Feature 

An invertible product for vectors! 

Geometric product of vectors 
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The Outer Product is not Invertible 
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Geometric product of vectors 
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Inverse geometric product, 

denoted by a slash, 

like standard division 

Unique Feature 

An invertible product for vectors! 
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Intuitive solutions for simple problems 
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t 

r 

p 

q 

? 

** Euclidean Metric 
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Geometric product and multivector space 

 The geometric product of two vectors is 

an element of mixed dimensionality 

15 

Scalars Vector Space Bivector Space Trivector Space 
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Geometric product and multivector space 

 The geometric product of two vectors is 

an element of mixed dimensionality 
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Scalars Vector Space Bivector Space Trivector Space 

Geometric Meaning 

The interpretation of the resulting 

element depends on the operands. 
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Properties of the geometric product 

 

 

 Scalars commute 

 Distributivity 

 Associativity 

 Neither fully symmetric 

 nor fully antisymmetric 
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Geometric product of basis blades 

Lecture IV 
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Geometric product of basis blades 

 Let’s assume an orthogonal metric, i.e., 
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Kronecker 

delta function 

With an orthogonal metric, 

there are two cases to be handled 

Metric factor 



Geometric product of basis blades 

 Let’s assume an orthogonal metric, i.e., 

 

 

 

 Case 1: blades consisting of different orthogonal factors 

 

 

 

 Case 2: blades with some common factors 
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The geometric product 

is equivalent to 

the outer product 

The dependent-basis 

factors are replaced 

by metric factors 



Geometric product of basis blades 

 Let’s assume a non-orthogonal metric, e.g., 

Visgraf - Summer School in Computer Graphics - 2010 21 

Apply the spectral theorem from 

linear algebra and reduce the problem 

to the orthogonal metric case 

** The spectral theorem states that a 

matrix is orthogonally diagonalizable 

if and only if it is symmetric. 



Geometric product of basis blades 

 For non-orthogonal metrics 

1. Compute the eigenvectors and eigenvalues of 

the metric matrix 

2. Represent the input with respect to the eigenbasis 

• Apply a change of basis using the inverse of 

the eigenvector matrix 

3. Compute the geometric product on this new 

orthogonal basis 

• The eigenvalues specify the new orthogonal metric 

4. Get back to the original basis 

• Apply a change of basis using the original eigenvector matrix 
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Geometric product of basis blades 

 For non-orthogonal metrics 

1. Compute the eigenvectors and eigenvalues of 

the metric matrix 

2. Represent the input with respect to the eigenbasis 

• Apply a change of basis using the inverse of 

the eigenvector matrix 

3. Compute the geometric product on this new 

orthogonal basis 

• The eigenvalues specify the new metric 

4. Get back to the original basis 

• Apply a change of basis using the original eigenvector matrix 
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See the Supplementary Material A of the 

Tutorial at Sibgrapi 2009 for a purest 

treatment of the geometric product 



Subspace Products from 

Geometric Product 

Lecture IV 
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The most fundamental product of GA 

 The subspace products can be derived 

from the geometric product 
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The “grade extraction” operation 

extracts grade parts from multivector 

A general multivector 

variable in  
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The most fundamental product of GA 

 The subspace products can be derived 

from the geometric product 
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Outer product Scalar product 

Left contraction Right contraction 

Delta product The largest grade such 

that the result is not zero 
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Orthogonal Transformations 

as Versors 

Lecture IV 
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Reflection of vectors 

28 

Vector a was reflected in 

vector v, resulting in vector a´ 

Input vector 

Mirror 
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k-Versor 
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V is a k-versor. It is computed 

as the geometric product of 

k invertible vectors. 
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Rotation of subspaces 

30 

How to rotate vector a in 

the            plane by      radians. 
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Rotation of subspaces 
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How to rotate vector a in 

the            plane by      radians. 
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Rotation of subspaces 
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Rotors 

Unit versors encoding rotations. 

They are build as the geometric product 

of an even number of unit invertible vectors. 

How to rotate vector a in 

the            plane by      radians. 
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Versor product for general multivectors 

33 

Grade Involution 

The sign change under the grade involution 

exhibits a + - + - + - … pattern over the value of t. 



The ○ symbol represents any product 

of geometric algebra 

The structure preservation property 
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The structure preservation of 

versors holds for the geometric product, 

and hence to all other products 

in geometric algebra. 

as a consequence, any operation 

defined from the products 

The ○ symbol represents any product 

of geometric algebra, and, 



Inverse of versors 
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Inverse 

Reverse (+ + – –  + + – – … pattern over k) 

The inverse of versors is 

computed as for the inverse of invertible blades 

Squared (reverse) norm 

The norm of rotors is equal to one, 

so the inverse of a rotor is its reverse 



Multivector classification 

 It can be used for blades and versors 

 Use Euclidean metric for blades 

 Use the actual metric for versors 

 Test if                     is truly the inverse of the multivector 
 
 

 Test the grade preservation property 
 
 

 If the multivector is of a single grade then it is a blade; 
otherwise it is a versor 
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𝑀 𝑀 𝑀   

grade 𝑀  𝑀−1 = 0 𝑀  𝑀−1 = 𝑀−1𝑀  

grade 𝑀  𝐞𝑖  𝑀 = 1 
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Differences between algebras 

 Clifford algebra 

 Developed in nongeometric directions 

 Permits us to construct elements by 
a universal addition 

 Arbitrary multivectors may be important 

 Geometric algebra 

 The geometrically significant part of Clifford algebra 

 Only permits exclusively multiplicative constructions 
• The only elements that can be added are 

scalars, vectors, pseudovectors, and pseudoscalars 

 Only blades and versors are important 
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