Introduction to Geometric Algebra Lecture IV

Leandro A. F. Fernandes laffernandes@inf.ufrgs.br

Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

Lecture IV

Checkpoint

Checkpoint, Lecture I

- Multivector space $\bigwedge \mathbb{R}^{n}$
- Non-metric products
- The outer product
- The regressive product

$$
\mathbf{C}_{\langle 2\rangle}=\mathbf{a} \wedge \mathbf{b}
$$

$$
\mathbf{c}=\mathbf{A}_{\langle 2\rangle} \vee \mathbf{B}_{\langle 2\rangle}
$$

Checkpoint, Lecture II

- Metric spaces
- Bilinear form $\mathrm{Q}(\mathbf{a}, \mathbf{b})$ defines a metric on the vector space, e.g., Euclidean metric
- Metric matrix
- Some inner products
- Inner product of vectors
- Scalar product
- Left contraction
- Right contraction

The scalar product is a particular case of the left and right contractions

$$
\left.\mathbf{A}_{\langle k\rangle} * \mathbf{B}_{\langle k\rangle}=\mathbf{A}_{\langle k\rangle}\right\rfloor \mathbf{B}_{\langle k\rangle}=\mathbf{A}_{\langle k\rangle}\left\lfloor\mathbf{B}_{\langle k\rangle}\right.
$$

These metric products are backward compatible for 1-blades

$$
\mathbf{a} \cdot \mathbf{b}=\mathbf{a} * \mathbf{b}=\mathbf{a}\rfloor \mathbf{b}=\mathbf{a}\lfloor\mathbf{b}
$$

Checkpoint, Lecture II

- Dualization

$$
\left.\mathbf{A}_{\langle k\rangle}^{*}=\mathbf{D}_{\langle n-k\rangle}=\mathbf{A}_{\langle k\rangle}\right\rfloor \mathbf{I}_{\langle n\rangle}^{-1}
$$

- Undualization

$$
\left.\mathbf{D}_{\langle n-k\rangle}^{-*}=\mathbf{A}_{\langle k\rangle}=\mathbf{D}_{\langle n-k\rangle}\right\rfloor \mathbf{I}_{\langle n\rangle}
$$

$\left(\mathbf{A}_{\langle k\rangle}^{*}\right)^{-*}=\mathbf{A}_{\langle k\rangle}$
By taking the undual, the dual representation of a blade can be correctly mapped back to its direct representation

Venn Diagrams

Checkpoint, Lecture III

- Duality relationships between products
- Dual of the outer product

$$
\left.\left(\mathbf{A}_{\langle\langle \rangle} \wedge \mathbf{B}_{\langle s\rangle}\right)^{*}=\mathbf{A}_{\langle\langle \rangle}\right\rangle \mathbf{B}_{\langle s\rangle}^{*}
$$

- Dual of the left contraction

$$
\left(\mathbf{A}_{\langle\langle \rangle} \backslash \mathbf{B}_{\langle\langle \rangle}\right)^{*}=\mathbf{A}_{\langle\langle \rangle} \wedge \mathbf{B}_{\langle\langle \rangle}^{*}
$$

Checkpoint, Lecture III

- Some non-linear products
- Meet of blades

$$
\mathbf{A}_{\langle r\rangle} \cap \mathbf{B}_{\langle s\rangle}
$$

- Join of blades

$$
\mathbf{A}_{\langle r\rangle} \cup \mathbf{B}_{\langle s\rangle}
$$

- Delta product of blades

$$
\mathbf{A}_{\langle r\rangle} \Delta \mathbf{B}_{\langle s\rangle}
$$

Today

- Lecture IV - Mon, January 18
- Geometric product
- Versors
- Rotors

Lecture IV

Geometric Product

Geometric product of vectors

Denoted by a white space, like Inner Product Outer Product standard multiplication

Unique Feature
An invertible product for vectors!

Geometric product of vectors

Geometric product of vectors

Unique Feature

An invertible product for vectors!
The Outer Product is not Invertible

Geometric product of vectors

$\mathbf{a} \mathbf{b}=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \wedge \mathbf{b}$

$$
D=\mathbf{a} \mathbf{b}
$$

Unique Feature

An invertible product for vectors!

$$
\begin{aligned}
& \text { vectors! } \\
& \begin{array}{c}
\text { Inverse geometric product, } \\
\text { denoted by a slash, } \\
\text { like standard division }
\end{array} \\
& \boldsymbol{D}=\frac{\boldsymbol{a} b}{b}=\boldsymbol{a} \\
& \hline \boldsymbol{D}
\end{aligned}
$$

Intuitive solutions for simple problems

$$
\mathbf{r}=\left(\frac{\mathbf{q}}{\mathbf{p}}\right) \mathbf{t}
$$

** Euclidean Metric

Geometric product and multivector space

- The geometric product of two vectors is an element of mixed dimensionality

Geometric product and multivector space

- The geometric product of two vectors is an element of mixed dimensionality

Properties of the geometric product

$$
\bigwedge \mathbb{R}^{n} \times \bigwedge \mathbb{R}^{n} \rightarrow \bigwedge \mathbb{R}^{n}
$$

Scalars commute $A(\beta B)=\beta(A B)$
Distributivity $A(B+C)=A B+A C$
Associativity $A(B C)=(A B) C$
Neither fully symmetric $\exists A, B \in \bigwedge \mathbb{R}^{n}: A B \neq B A$ nor fully antisymmetric

Geometric product of basis blades

Geometric product of basis blades

- Let's assume an orthogonal metric, i.e.,

$$
\mathbf{e}_{i} \cdot \mathbf{e}_{j}=m_{i} \delta_{j}^{i}
$$

With an orthogonal metric,

$$
\delta_{j}^{i}=\left\{\begin{array}{lll}
1 & i=j & \text { Kronecker } \\
0 & i \neq j & \text { delta function }
\end{array}\right.
$$

there are two cases to be handled

$$
m_{i} \in \mathbb{R}
$$

Metric factor

Geometric product of basis blades

- Let's assume an orthogonal metric, i.e.,

$$
\mathbf{e}_{i} \cdot \mathbf{e}_{j}=m_{i} \delta_{j}^{i}
$$

- Case 1: blades consisting of different orthogonal factors

$$
\mathbf{e}_{1} \mathbf{e}_{2} \cdots \mathbf{e}_{k}=\mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \cdots \wedge \mathbf{e}_{k}
$$

The geometric product is equivalent to the outer product

- Case 2: blades with some common factors

$$
\left(\mathbf{e}_{1} \wedge \mathbf{e}_{2}\right)\left(\mathbf{e}_{2} \wedge \mathbf{e}_{3}\right)=\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{2} \mathbf{e}_{3}=\mathbf{e}_{1} m_{2} \mathbf{e}_{3}=m_{2} \mathbf{e}_{1} \wedge \mathbf{e}_{3}
$$

The dependent-basis factors are replaced by metric factors

Geometric product of basis blades

- Let's assume a non-orthogonal metric, e.g.,

$$
\mathbf{M}=\left(\begin{array}{cccccc}
\mathbf{0} & \mathbf{e}_{1} & \mathbf{e}_{2} & \cdots & \mathbf{e}_{d} & \infty \\
0 & 0 & 0 & \cdots & 0 & -1 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
-1 & 0 & 0 & \cdots & 0 & 0
\end{array}\right) \begin{gathered}
\\
\mathbf{0} \\
\mathbf{e}_{1} \\
\mathbf{e}_{2} \\
\vdots \\
\mathbf{e}_{d} \\
\infty
\end{gathered}
$$

Apply the spectral theorem from linear algebra and reduce the problem to the orthogonal metric case
** The spectral theorem states that a matrix is orthogonally diagonalizable if and only if it is symmetric.

Geometric product of basis blades

- For non-orthogonal metrics

1. Compute the eigenvectors and eigenvalues of the metric matrix
2. Represent the input with respect to the eigenbasis

- Apply a change of basis using the inverse of the eigenvector matrix

3. Compute the geometric product on this new orthogonal basis

- The eigenvalues specify the new orthogonal metric

4. Get back to the original basis

- Apply a change of basis using the original eigenvector matrix

Geometric product of basis blades

- For non-orthogonal metrics

1. Compute the eigenvectors and eigenvalues of the metric matrix
2. Represent the input with respect to the eigenbasis

- Apply a change of basis using the inverse of the eigenvector matrix

3. Compute the orthogonal bas

- The eigenvalu

4. Get back to th

See the Supplementary Material A of the
Tutorial at Sibgrapi 2009 for a purest treatment of the geometric product

Subspace Products from Geometric Product

The most fundamental product of GA

- The subspace products can be derived from the gf The "grade extraction" operation extracts grade parts from multivector

$$
\begin{array}{rlr}
M= & \alpha_{1} & \text { A general multivector } \\
& +\alpha_{2} \mathbf{e}_{1}+\alpha_{3} \mathbf{e}_{2}+\alpha_{4} \mathbf{e}_{3} & \text { variable in } \wedge \mathbb{R}^{3} \\
& +\alpha_{5} \mathbf{e}_{1} \wedge \mathbf{e}_{2}+\alpha_{6} \mathbf{e}_{1} \wedge \mathbf{e}_{3}+\alpha_{7} \mathbf{e}_{2} \wedge \mathbf{e}_{3} \\
& +\alpha_{8} \mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{3} \\
\langle M\rangle_{2}= & \alpha_{5} \mathbf{e}_{1} \wedge \mathbf{e}_{2}+\alpha_{6} \mathbf{e}_{1} \wedge \mathbf{e}_{3}+\alpha_{7} \mathbf{e}_{2} \wedge \mathbf{e}_{3}
\end{array}
$$

The most fundamental product of GA

- The subspace products can be derived from the geometric product
$\mathbf{A}_{\langle\langle \rangle} \wedge \mathbf{B}_{\langle s\rangle}=\left\langle\mathbf{A}_{\langle\langle \rangle} \mathbf{B}_{\langle s\rangle}\right\rangle_{r+s}$
Outer product
$\mathbf{A}_{\langle r\rangle} \downharpoonleft \mathbf{B}_{\langle s\rangle}=\left\langle\mathbf{A}_{\langle\langle \rangle} \mathbf{B}_{\langle s\rangle}\right\rangle_{s-r}$
Left contraction
$\mathbf{A}_{\langle r\rangle} * \mathbf{B}_{\langle s\rangle}=\left\langle\mathbf{A}_{\langle r\rangle} \mathbf{B}_{\langle s\rangle}\right\rangle_{0}$
Scalar product
$\mathbf{A}_{\langle r\rangle}\left\lfloor\mathbf{B}_{\langle s\rangle}=\left\langle\mathbf{A}_{\langle r\rangle} \mathbf{B}_{\langle s\rangle}\right\rangle_{r-s}\right.$
Right contraction
$\mathbf{A}_{\langle\gamma\rangle} \mathbf{\Delta} \mathbf{B}_{\langle s\rangle}=\left\langle\mathbf{A}_{\langle r\rangle} \mathbf{B}\right.$
Delta product

The largest grade such that the result is not zero

Orthogonal Transformations as Versors

Reflection of vectors

$$
\mathbf{a}^{\prime}=-\mathbf{v} \mathbf{a ~}^{-1}
$$

Vector \mathbf{a} was reflected in vector \mathbf{V}, resulting in vector \mathbf{a}^{\prime}

Input vector

k-Versor

$$
\begin{aligned}
& \mathbf{a}^{\prime}=-\mathbf{v}_{1} \mathbf{a} \mathbf{v}_{1}^{-1} \\
& \mathbf{a}^{\prime \prime}=+\mathbf{v}_{2} \mathbf{v}_{1} \mathbf{a} \mathbf{v}_{1}^{-1} \mathbf{v}_{2}^{-1} \\
& \mathbf{a}^{\prime \prime \prime}=(-1)^{k}\left(\mathbf{v}_{k} \cdots \mathbf{v}_{2} \mathbf{v}_{1}\right) \mathbf{a}\left(\mathbf{v}_{1}^{-1} \mathbf{v}_{2}^{-1} \cdots \mathbf{v}_{k}^{-1}\right)
\end{aligned}
$$

$$
\mathbf{a}^{\prime \prime \prime}=(-1)^{k} \boldsymbol{V} \mathbf{a} \boldsymbol{V}^{-1}
$$

\boldsymbol{V} is a k-versor. It is computed as the geometric product of k invertible vectors.

Rotation of subspaces

How to rotate vector \mathbf{a} in the $\mathbf{p} \wedge \mathbf{q}$ plane by ϕ radians.

Rotation of subspaces

How to rotate vector \mathbf{a} in
 the $\mathbf{p} \wedge \mathbf{q}$ plane by ϕ radians.

Rotation of subspaces

How to rotate vector \mathbf{a} in the $\mathbf{p} \wedge \mathbf{q}$ plane by ϕ radians.

Unit versors encoding rotations.
They are build as the geometric product of an even number of unit invertible vectors.

Versor product for general multivectors

$$
M^{\prime}= \begin{cases}\boldsymbol{V} M \boldsymbol{V}^{-1} & \text { for even versors } \\ \boldsymbol{V} \widehat{M} \boldsymbol{V}^{-1} & \text { for odd versors }\end{cases}
$$

Grade Involution

$$
\widehat{\mathbf{B}}_{\langle t\rangle}=(-1)^{t} \mathbf{B}_{\langle t\rangle}
$$

The sign change under the grade involution exhibits a $+-+-+-\ldots$ pattern over the value of t.

The structure preservation property

$$
\boldsymbol{V}(A \circ B) \boldsymbol{V}^{-1}=\left(\boldsymbol{V} A \boldsymbol{V}^{-1}\right) \circ\left(\boldsymbol{V} B \boldsymbol{V}^{-1}\right)
$$

The structure preservation of versors holds for the geometric product, and hence to all other products in geometric algebra.

The o symbol represents any product of geometric algebra, and, as a consequence, any operation defined from the products

Inverse of versors

The inverse of versors is
computed as for the inverse of invertible blades

$$
V^{-1}=\frac{\tilde{V}}{\|V\|^{2}}
$$

$$
\|V\|^{2}=\tilde{V} * V
$$

Squared (reverse) norm

$$
\tilde{\mathbf{A}}_{\langle k\rangle}=(-1)^{k(k-1) / 2} \mathbf{A}_{\langle k\rangle}
$$

$$
\text { Reverse (++ -- ++-- ... pattern over } k \text {) }
$$

The norm of rotors is equal to one, so the inverse of a rotor is its reverse

$$
\boldsymbol{R}^{-1}=\tilde{\boldsymbol{R}}
$$

Multivector classification

- It can be used for blades and versors
- Use Euclidean metric for blades
- Use the actual metric for versors
- Test if $M /(M \widetilde{M})$ is truly the inverse of the multivector

$$
\operatorname{grade}\left(\widehat{M} M^{-1}\right)=0 \quad \widehat{M} M^{-1}=M^{-1} \widehat{M}
$$

- Test the grade preservation property

$$
\operatorname{grade}\left(\widehat{M} \mathbf{e}_{i} \widetilde{M}\right)=1
$$

- If the multivector is of a single grade then it is a blade; otherwise it is a versor

Credits

William R. Hamilton (1805-1865)

Hermann G. Grassmann (1809-1877)

William K. Clifford (1845-1879)

Clifford, W. K. (1878) Applications of Grassmann's extensive algebra. Am. J. Math., Walter de Gruyter Und Co., vol. 1, n. 4, 350-358

Differences between algebras

- Clifford algebra
- Developed in nongeometric directions
- Permits us to construct elements by a universal addition
- Arbitrary multivectors may be important
- Geometric algebra
- The geometrically significant part of Clifford algebra
- Only permits exclusively multiplicative constructions
- The only elements that can be added are scalars, vectors, pseudovectors, and pseudoscalars
- Only blades and versors are important

