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Checkpoint 

Lecture V 
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Checkpoint 

 The geometric product is the most fundamental 

product of geometric algebra 

 It is an invertible product 
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Geometric product of vectors 



Visgraf - Summer School in Computer Graphics - 2010 

Checkpoint 

 The geometric product is the most fundamental 

product of geometric algebra 

 It is an invertible product 

 The subspace products can be derived from it 
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Outer product Scalar product 

Left contraction Right contraction 

Delta product 
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Checkpoint 

 Versors encode linear transformations, e.g., 

 Reflections 

 Rotations (rotors) 
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Today 

 Lecture V – Tue, January 19 

 Models of geometry 

 Euclidean vector space model 

 Homogeneous model 
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Models of Geometry 

Lecture V 
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What does a Model of Geometry do? 

 Assumes a metric to the space 

 

 

 Gives a geometrical interpretation to subspaces 

 Directions, points, straight lines, circles, etc. 

 

 Makes versors behave like some transformation type 

 Scaling, rotation, translation, etc. 
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Euclidean Vector Space 

Model of Geometry 

Lecture V 

9 



Visgraf - Summer School in Computer Graphics - 2010 

Euclidean vector space model 

 Euclidean metric 
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Euclidean vector space model 

 Euclidean metric 

 Blades 

 Euclidean subspaces 

11 

Geometrically, an Euclidean subspace 

is a flat in n-dimensional Euclidean space 

that passes through the origin. 



Solving homogeneous systems 

of linear equations with n variables 
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Each equation of the system is the 

dual of and hyperplane 

that passes through the origin. 



Solving homogeneous systems 

of linear equations with n variables 

 The general approach is 

 

 

 When the system has no solution 

 The resulting subspace will be zero 

 When the system is underdeterminated 

 The resulting subspace has more than one dimension 
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𝐟1 ∧ 𝐟2 ∧ ⋯ ∧ 𝐟𝑘
−∗ 

1 ≤ 𝑘 ≤ 𝑛 
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Euclidean vector space model 

 Euclidean metric 

 Blades 

 Euclidean subspaces 

 Versors 

 Reflections 

 Rotations (rotors) 
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Rotations as double reflections 
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Rotations as the exponential of 2-blades 
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Unit rotation plane 

Rotation angle (in radians) 



The exponential of k-blades for arbitrary metric spaces 

Rotations as the exponential of 2-blades 
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Maclaurin series 
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Rotations as the exponential of 2-blades 
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𝐻 = 𝛼 + 𝛽1 𝑖 + 𝛽2 𝑗 + 𝛽3 𝑘 

 

𝛼, 𝛽1 ,  𝛽2 , 𝛽3 ∈ ℝ 

𝑖2 = 𝑗2 = 𝑘2 = 𝑖 𝑗 𝑘 = −1 



Logarithm of a rotation in a plane 
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log 𝑹 =
𝑹 2

𝑹 2
 tan−1

𝑹 2

𝑹 0
 

When R = 1 the logarithm is virtually zero. 

But the ambiguity at R = -1 cannot be resolved without 

making an arbitrary choice for the rotation plane.  

This equation is defined only for rotors 

3-D Euclidean vector spaces. 

 

The logarithm of a general rotor 

is an open problem. 



Rotation interpolation 
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𝑺 = exp
log 𝑹

𝑛
 

Adapted from L. Dorst, D. Fontijine, S. Mann. Geometric algebra 

for computer science. Morgan Kaufmann Publishers, 2007. 

𝑹 =
𝑹2

𝑹1
 

Rotation step (it is applied n times) 

Rotor to be interpolated 

𝑹1 𝑋  

𝑹2 𝑋  



Homogeneous Model of Geometry 

Lecture V 
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Homogeneous model 

 The same modeling principle as 

homogeneous coordinates from 

linear algebra 
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3-D Representational Space 

2-D Base Space 

The d-dimensional base space is 

embedded in a (d+1)-dimensional 

representational vector space. 



Homogeneous model 

 The same modeling principle as 

homogeneous coordinates from 

linear algebra 
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3-D Representational Space 

2-D Base Space 

The extra basis vector is 

interpreted as point at origin. 



Homogeneous model 

 The same modeling principle as 

homogeneous coordinates from 

linear algebra 

 Euclidean metric 
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Homogeneous model 

 The same modeling principle as 

homogeneous coordinates from 

linear algebra 

 Euclidean metric 

 Well suited to compute with oriented k-flats 

 0-flat → point 

 1-flat → straigh line 

 2-flat → plane 

 etc. 
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Vectors interpreted as points 

Visgraf - Summer School in Computer Graphics - 2010 26 

3-D Representational Space 

2-D Base Space 

General proper point 

Proper points have finite location. 

 

The scalar factor γ does not 

affect the location of a proper point. 

 

Unit proper points have γ equal to one. 



3-D Representational Space 

2-D Base Space 

Vectors interpreted as directions 
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Improper point 

Improper points are points at infinity. 

 

Improper points can be seen as 

directions, because they are in purely 

directional space of the total space. 

 

Unlike proper points, directions  have 

the coefficient of        equal to zero. 



2-Blades interpreted as lines 
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3-D Representational Space 

2-D Base Space 



2-Blades interpreted as lines 
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2-D Base Space 

3-D Representational Space 

d 



Hyperplane ((d-1)-flat) from unit normal and distance from the origin 

Building oriented k-flats 
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k-Flat from k+1 points 

k-Flat from support point and k-D direction 

The coordinate representation of the 

homogeneous elements 

naturally embeds Plücker coordinates 

for line computation. 



Parameters of 
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Condition: 

Direction           : 

Moment          : 

Support vector    : 

Unit support point             : 

Direction Finite Flat 

3-D Base Space 



Applying a rotation around the origin to 
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A rotor in The rotation formula applies to 

any blade (flat or direction). 

 

It is the same for direct or dual blades. 



Applying a translation to 
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A translation vector in 

The translation formula applies to 

any blade (flat or direction). 

 

For dual elements the formula is 

slightly different. 



Applying a rigid body motion to 
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The most common way to characterizing 

a rigid body motion is a rotation around the origin, 

followed by a translation. 

It also applies to 

any blade (flat or direction). 

 

For dual elements the formula 

is slightly different. 



Pinhole camera 
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Adapted from L. Dorst, D. Fontijine, S. Mann. Geometric algebra 

for computer science. Morgan Kaufmann Publishers, 2007. 



Pinhole camera 
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Adapted from L. Dorst, D. Fontijine, S. Mann. Geometric algebra 

for computer science. Morgan Kaufmann Publishers, 2007. 



The analysis of the projective structure of 

uncalibrated cameras 

37 
E. Bayro-Corrochano, et al. (1996) Geometric algebra: a framework for computing point 

and line correspondences and projective…, in Proc. of the 13th ICPR, pp. 334–338. 



Automatic tessellation of quadric surfaces 

38 
F. Jourdan et al. (2004), Automatic tessellation of quadric surfaces using Grassmann-

Cayley algebra, in Proc. Int. Conf. Comput. Vis. Graph., pp. 674–682. 

2-D 

3-D 



How to draw a conic section 
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a 

b 

s 

p 
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The geometric meaning 

of each step 

can be written directly as 

algebraic equations. 


