Introduction to Geometric Algebra Lecture VI

Leandro A. F. Fernandes laffernandes@inf.ufrgs.br

Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

Lecture VI
Checkpoint

Checkpoint

- Euclidean vector space model of geometry
- Euclidean metric
- Blades are Euclidean subspaces
- Versors encode reflections and rotations

Checkpoint

- Solving homogeneous systems of linear equations

Each equation of the system is the dual of and hyperplane that passes through the origin.

Checkpoint

- Rotation rotors as the exponential of 2-blades

$$
\boldsymbol{R}=\exp \left(-\frac{\phi}{2} \mathbf{B}_{\langle 2\rangle}\right)=\cos \left(\frac{\phi}{2}\right)-\sin \left(\frac{\phi}{2}\right) \mathbf{B}_{\langle 2\rangle}
$$

- The logarithm of rotors in 3-D vector space

$$
\log (\boldsymbol{R})=\frac{\langle\boldsymbol{R}\rangle_{2}}{\left\|\langle\boldsymbol{R}\rangle_{2}\right\|} \tan ^{-1}\left(\frac{\left\|\langle\boldsymbol{R}\rangle_{2}\right\|}{\left\|\langle\boldsymbol{R}\rangle_{0}\right\|}\right)
$$

Checkpoint

- Rotation interpolation

$$
\boldsymbol{R}=\frac{\boldsymbol{R}_{2}}{\boldsymbol{R}_{1}}
$$

Rotor to be interpolated
$\boldsymbol{S}=\exp \left(\frac{\log (\boldsymbol{R})}{n}\right)$
Rotation step (it is applied n times)

Adapted from L. Dorst, D. Fontijine, S. Mann. Geometric algebra for computer science. Morgan Kaufmann Publishers, 2007.

Checkpoint

- Homogeneous model of geometry
- Euclidean metric
- d-D base space, ($d+1$)-D representational space

The extra basis vector is interpreted as point at origin.

Checkpoint

- Homogeneous model of geometry
- Euclidean metric
- d-D base space, ($d+1$)-D representational space
- Blades are oriented flats or directions

Checkpoint

- Homogeneous model of geometry
- Euclidean metric
- d-D base space, ($d+1$)-D representational space
- Blades are flats or directions
- Rotors encode rotations around the origin

$$
\boldsymbol{R} \mathbf{X}_{\langle t\rangle} \boldsymbol{R}^{-1}
$$

The rotation formula applies to any blade (flat or direction).

It is the same for direct or dual blades.

Checkpoint

- Homogeneous model of geometry
- Euclidean metric
- d-D base space, ($d+1$)-D representational space
- Blades are flats or directions
- Rotors encode rotations around the origin
- Translation formula

The translation formula applies to any blade (flat or direction).

For dual elements the formula is slightly different.

$$
\left.\mathbf{X}_{\langle t\rangle}+\mathbf{t} \wedge\left(\mathbf{e}_{0}^{-1}\right\rfloor \mathbf{X}_{\langle t\rangle}\right)
$$

Checkpoint

- Homogeneous model of geometry
- Euclidean metric
- d-D base space, $(d+1)$-D representational space
- Blades are flats or directions
- Rotors encode rotations around the origin
- Translation formula
- Rigid body motion formula

It also applies to
any blade (flat or direction).
For dual elements the formula
is slightly different.

$$
\left.\boldsymbol{R} \mathbf{X}_{\langle\langle \rangle} \boldsymbol{R}^{-1}+\mathfrak{t} \wedge\left(\mathbf{e}_{0}^{-1}\right\lrcorner\left(\boldsymbol{R} \mathbf{X}_{\langle t\rangle} \boldsymbol{R}^{-1}\right)\right)
$$

Today

- Lecture VI - Fri, January 22
- Conformal model
- Concluding remarks

Conformal Model of Geometry

Motivational example

Adapted from L. Dorst, D. Fontijine, S. Mann. Geometric algebra for computer science. Morgan Kaufmann Publishers, 2007.

1. Create the circle through points $\mathbf{c}_{1}, \mathbf{c}_{2}$ and \mathbf{c}_{3}

$$
C=c_{1} \wedge c_{2} \wedge c_{3}
$$

2. Create a straight line L

$$
L=a_{1} \wedge a_{2} \wedge \infty
$$

3. Rotate the circle around the line and show n rotation steps

$$
\begin{gathered}
R=\exp \left(\phi L^{*} / 2\right) \\
R^{1 / N} C / R^{1 / N}
\end{gathered}
$$

4. Create a plane through point p and with normal vector \mathbf{n}

$$
\begin{aligned}
& \pi=p\rfloor(\mathbf{n} \infty) \\
& \text { Dual plane }
\end{aligned}
$$

5. Reflect the whole situation with the line and the circlers in the plane

$$
X \mapsto-\pi X / \pi
$$

Motivational example

Adapted from L. Dorst, D. Fontijine, S. Mann. Geometric algebra for computer science. Morgan Kaufmann Publishers, 2007.

1. Create the circle through points $\mathbf{c}_{1}, \mathbf{c}_{2}$ and \mathbf{c}_{3}

$$
C=c_{1} \wedge c_{2} \wedge c_{3}
$$

2. Create a straight line L

$$
L=a_{1} \wedge a_{2} \wedge \infty
$$

3. Rotate the circle around the line and show n rotation steps

$$
\begin{gathered}
R=\exp \left(\phi L^{*} / 2\right) \\
R^{1 / N} C / R^{1 / N}
\end{gathered}
$$

4. Create a sphere through point p and with center c

$$
\begin{aligned}
& \sigma=p\rfloor(c \wedge \infty) \\
& \text { Dual sphere }
\end{aligned}
$$

The only thing that is different is that the plane was changed by the sphere.
5. Reflect the whole situation with the line and the circlers in the sphere

$$
X \mapsto-\sigma X / \sigma
$$

Points in a Euclidean space

- A Euclidean space has points at a well-defined distance from each other

$$
d_{E}^{2}(\mathcal{P}, Q)=(\mathbf{p}-\mathbf{q})^{2}=(\mathbf{p}-\mathbf{q}) \cdot(\mathbf{p}-\mathbf{q})
$$

- Euclidean spaces do not really have an origin
- It is convenient to close a Euclidean space by augmenting it with a point at infinity

The point at infinity is:

- The only point at infinity
- A point in common to all flats
- Invariant under the Euclidean transformations

Points in a Euclidean space

- A Euclidean space has points at a well-defined distance from each other

$$
d_{E}^{2}(\mathcal{P}, Q)=(\mathbf{p}-\mathbf{q})^{2}=(\mathbf{p}-\mathbf{q}) \cdot(\mathbf{p}-\mathbf{q})
$$

- Euclidean spaces do not really have an origin

In the conformal model of geometry these properties are central because such model is designed for Euclidean geometry.

Base space and representational space

- The arbitrary origin is achieved by assign an extra dimension to the d-dimensional base space
- The point at infinity is another extra dimension assigned to the d-dimensional base space

$$
\left\{\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{d}, \infty\right\}_{\text {Point at infinity }}^{d \text {-dimensional base space }}
$$

Point at origin
$(d+2)$-dimensional
representational space

2-D Base Space

Example

Here, the 4-D representational space is seem as homogeneous coordinates, where the $\mathbf{0}$ coordinate is set to one.

2-D Base Space

Example

Basis vector interpreted as point at origin.

4-D Representational Space

2-D Base Space

Example

Basis vector interpreted as point at infinity.

Euclidean points as null vectors

- Euclidean points in the base space are vectors in the representational space
- The inner product of such vectors is directly proportional to the square distance of the points

$$
\mathbf{p} \cdot \mathbf{q} \risingdotseq-\frac{1}{2} d_{E}^{2}(\mathcal{P}, Q)
$$

For a unit finite point
and the point at infinity, $\mathbf{p} \cdot \infty=-1$.

Here, \mathbf{p} and \mathbf{q} are vectors in the representational space. They encode unit finite points \mathcal{P} and Q, respectively.

We know that $d_{E}^{2}(\mathcal{P}, \mathcal{P})=0$.
As a consequence, $\mathbf{p} \cdot \mathbf{p}=0$.

Non-Euclidean metric matrix

$$
\mathbf{M}=\left(\begin{array}{cccccc}
\mathbf{0} & \mathbf{e}_{1} & \mathbf{e}_{2} & \cdots & \mathbf{e}_{d} & \infty \\
\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & -1 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
-1 & 0 & 0 & \cdots & 0 & 0
\end{array}\right) & \begin{array}{c}
\mathbf{0} \\
\mathbf{e}_{1} \\
\mathbf{e}_{2} \\
\vdots \\
\mathbf{e}_{d} \\
\infty
\end{array}
\end{array}\right.
$$

Unit finite point
$\mathbf{u}=\mathbf{0}+\alpha_{1} \mathbf{e}_{1}+\alpha_{2} \mathbf{e}_{2}+\cdots+\alpha_{d} \mathbf{e}_{d}+\frac{1}{2}\left(\sum_{i=1}^{d} \alpha_{i}^{2}\right) \infty$

2-D Base Space

Finite points

$$
\begin{aligned}
& \text { General finite point } \\
& \mathbf{p}=\gamma\left(\mathbf{0}+\alpha_{1} \mathbf{e}_{1}+\alpha_{2} \mathbf{e}_{2}+\cdots+\alpha_{d} \mathbf{e}_{d}+\frac{1}{2}\left(\sum_{i=1}^{d} \alpha_{i}^{2}\right) \boldsymbol{\infty}\right)
\end{aligned}
$$

4-D Representational Space a paraboloid in the ∞-direction

Conformal Primitives

Conformal primitives

- Oriented rounds
- Point pair, circle, sphere, etc.
- Oriented flats
- Straight line, plane, etc.
- Frees
- Directions
- Tangents
- Directions tangent to a round at a given location

Oriented rounds

- They are built as the outer product of finite points

- Examples
- Point pair (0-sphere)

$$
\mathbf{P}_{\langle 2\rangle}=\mathbf{p} \wedge \mathbf{r}
$$

Oriented rounds

- They are built as the outer product of finite points

- Examples
- Point pair (0-sphere)
- Circle (1-sphere)

$$
\mathbf{C}_{\langle 3\rangle}=\mathbf{p} \wedge \mathbf{q} \wedge \mathbf{r}
$$

Oriented rounds

- They are built as the outer product of finite points
- Examples
- Point pair (0-sphere)
- Circle (1-sphere)
- Sphere (2-sphere)
- etc.
k-Sphere from $k+2$ finite points

$$
\mathbf{S}_{\langle k+2\rangle}=\mathbf{p}_{1} \wedge \mathbf{p}_{2} \wedge \cdots \wedge \mathbf{p}_{k+2}
$$

k-Sphere with center point \mathbf{c}, radius $\boldsymbol{\rho}$, and the direction of the carrier flat

$$
\left.\mathbf{S}_{\langle k+2\rangle}=\left(\mathbf{c}+\frac{1}{2} \rho^{2} \infty\right) \wedge(-\mathbf{c}\lrcorner\left(\hat{\mathbf{A}}_{\langle k\rangle} \infty\right)\right)
$$

($d-1$)-Sphere around \mathbf{c} through \mathbf{p}

$$
\mathbf{S}_{\langle d+1\rangle}=\mathbf{p} \wedge(\mathbf{c} \wedge \infty)^{-*}
$$

Oriented flats

- They are built as the outer product of finite points and the point at infinity

Oriented flats

- They are built as the outer product of finite points and the point at infinity

2-D Base Space

- Examples
- Flat point (0-flat)
- Straigh line (1-flat)

$$
\mathbf{L}_{\langle 3\rangle}=\mathbf{p} \wedge \mathbf{q} \wedge \infty
$$

Oriented flats

- They are built as the outer product of finite points and the point at infinity
- Examples
- Flat point (0-flat)
- Straigh line (1-flat)
- Plane (2-flat)
- etc.
k-Flat from $k+1$ finite points

$$
\mathbf{F}_{\langle k+2\rangle}=\mathbf{p}_{1} \wedge \mathbf{p}_{2} \wedge \cdots \wedge \mathbf{p}_{k+1} \wedge \infty
$$

k-Flat from support point and k-D direction

$$
\mathbf{F}_{\langle k+2\rangle}=\mathbf{p} \wedge \mathbf{A}_{\langle k\rangle} \wedge \boldsymbol{\infty}
$$

Hyperplane from unit normal and distance from the origin

$$
\mathbf{H}_{\langle d+1\rangle}=(\mathbf{n}+\delta \infty)^{-*}
$$

Hyperplane with normal \mathbf{n}, through \mathbf{p}

$$
\mathbf{H}_{\langle d+1\rangle}=(\mathbf{p}+\mathbf{q})^{-*}
$$

$$
\mathbf{H}_{\langle d+1\rangle}=\mathbf{p} \wedge(\mathbf{n} \wedge \infty)^{-*}
$$

Flats are rounds with infinite radius

$$
\mathbf{L}_{\langle 3\rangle}=\mathbf{p} \wedge \mathbf{q} \wedge \infty
$$

$$
\mathbf{C}_{\langle 3\rangle}=\mathbf{p} \wedge \mathbf{q} \wedge \mathbf{r}
$$

Frees

- A free element is interpreted as a direction
- A free is built as the outer product of vectors in the base space and the point at infinity

$$
\begin{aligned}
\mathbf{D}_{\langle k+1\rangle}= & \mathbf{A}_{\langle k\rangle} \wedge \boldsymbol{\infty} \\
& \text { where } \mathbf{A}_{\langle k\rangle} \subseteq\left(\mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \cdots \wedge \mathbf{e}_{d}\right)
\end{aligned}
$$

They are invariant to translation because they are perpendicular to the assumed origin vector.

Tangents

- They are subspaces tanget to the paraboloid defined by the finite points

- Point-like interpretation and also direction information

Tangent to a round at the point \mathbf{p}
$\left.\mathbf{T}_{\langle\langle-1\rangle}=\mathbf{p}\right\rfloor \widehat{\mathbf{X}}_{\langle k\rangle}$

Tangent at \mathbf{p} with a given direction

$$
\left.\mathbf{T}_{\langle k-1\rangle}=\mathbf{p} \wedge(-\mathbf{p}\rfloor\left(\widehat{\mathbf{A}}_{\langle k\rangle} \wedge \infty\right)\right)
$$

Universal Orthogonal Transformations

Euclidean transformations as versors

- Euclidean transfromations preserve the point at infinity, i.e.,

$$
\widehat{V} \infty V^{-1}=\infty
$$

- The condition on a versor to be Euclidean is

$$
\infty\rfloor V=0
$$

- The simplest and most general Euclidean versor is

$$
\mathbf{h}=\mathbf{n}+\delta \infty
$$

This vector is a dual hyperplane.
As an 1-versor it encodes a reflection.

Reflection versor

- The dual of hyperplanes and hyperspheres act as mirrors

$$
\begin{aligned}
\mathbf{h} & =\mathbf{H}_{\langle(\alpha+1)}^{*} \\
X^{\prime} & =\mathbf{h} \widehat{X} \mathbf{h}^{-1}
\end{aligned}
$$

All Euclidean transformations can be made by multiple reflections in well-chosen planes.

Adapted from L. Dorst, D. Fontijine, S. Mann. Geometric algebra for computer science. Morgan Kaufmann Publishers, 2007.

Translation rotor

- The double reflection on two paralell planes with same orientation make a translation Translation vector

Using the dual of the planes as mirrors:
(n) $\left.\delta_{2} \infty\right)\left(\mathbf{n}+\delta_{1} \infty\right)=1-\left(\delta_{2}-\delta_{1}\right) \mathbf{n} \infty$

Unit normal vector in base space

$$
\begin{aligned}
& =1-\frac{1}{2} \mathrm{t} \infty \\
& \equiv \boldsymbol{T}
\end{aligned}
$$

where $\mathbf{t}=2\left(\delta_{2}-\delta_{1}\right) \mathbf{n}$

Translation rotor

- The double reflection on two paralell planes

with sam

The exponential of k-blades for arbitrary metric spaces
Using the dual $\left(\mathbf{n}+\delta_{2} \infty\right)(\mathbf{n}-$

$$
\begin{aligned}
& \exp \left(\mathbf{A}_{\langle k\rangle}\right)= 1+\frac{\mathbf{A}_{\langle k\rangle}}{1!}+\frac{\mathbf{A}_{\langle k\rangle}^{2}}{2!}+\frac{\mathbf{A}_{\langle k\rangle}^{3}}{3!}+\cdots \\
&= \begin{cases}\cos \alpha+\frac{\sin \alpha}{\alpha} \mathbf{A}_{\langle k\rangle} & \text { for } \mathbf{A}_{\langle k\rangle}^{2}<0 \\
1+\mathbf{A}_{\langle k\rangle} & \text { for } \mathbf{A}_{\langle k\rangle}^{2}=0, \\
\cosh \alpha+\frac{\sinh \alpha}{\alpha} \mathbf{A}_{\langle k\rangle} & \text { for } \mathbf{A}_{\langle k\rangle}^{2}>0\end{cases} \\
& \text { where } \alpha=\sqrt{\operatorname{abs}\left(\mathbf{A}_{\langle k\rangle}^{2}\right) .}
\end{aligned}
$$

Translation rotor

- The double reflection on two paralell planes with same orientation make a translation Translation vector

Using the dual of the planes as mirrors:
(n) $\left.\delta_{2} \infty\right)\left(\mathbf{n}+\delta_{1} \infty\right)=1-\left(\delta_{2}-\delta_{1}\right) \mathbf{n} \infty$

Unit normal vector in base space

$$
\begin{aligned}
& =1-\frac{1}{2} \mathrm{t} \infty \\
& \equiv T
\end{aligned}
$$

where $\mathbf{t}=2\left(\delta_{2}-\delta_{1}\right) \mathbf{n}$
Exponential form:

$$
\begin{aligned}
T & =\exp \left(-\frac{1}{2} \mathrm{t} \infty\right)=1-\frac{1}{2} \mathrm{t} \infty \\
X^{\prime} & =T X T^{-1}
\end{aligned}
$$

Rotation rotor

- The double reflection on two non-paralell planes through the origin make a rotation

Using the dual of the planes as mirrors:

$$
\left(\mathbf{n}_{2}+\delta_{2}\right) \infty\left(\mathbf{n}_{1}-\delta_{1} \infty\right)=\mathbf{n}_{2} \mathbf{n}_{1}
$$

Unit normal vector in base space

The distance from $=\cos \left(\frac{\phi}{2}\right)-\sin \left(\frac{\phi}{2}\right) \mathbf{B}_{\langle 2\rangle}$ the origin is zero

$$
\begin{aligned}
& =\mathbf{n}_{2} \cdot \mathbf{n}_{1}+\mathbf{n}_{2} \wedge \mathbf{n}_{1} \\
& =\cos \left(\frac{\phi}{2}\right)-\sin \left(\frac{\phi}{2}\right) \mathbf{B}_{\langle 2\rangle} \\
& \equiv \boldsymbol{R}
\end{aligned}
$$

Exponential form:

$$
\begin{aligned}
\boldsymbol{R} & =\exp \left(-\frac{\phi}{2} \mathbf{B}_{\langle 2\rangle}\right)=\cos \left(\frac{\phi}{2}\right)-\sin \left(\frac{\phi}{2}\right) \mathbf{B}_{\langle 2\rangle} \\
X^{\prime} & =\boldsymbol{R} X \boldsymbol{R}^{-1}
\end{aligned}
$$

General rigid body motion

- It can be composed by first doing a rotation in the origin and following it by a translation

$$
\left.\begin{array}{rl}
M=\exp \left(-\frac{1}{2} \mathbf{t} \infty\right.
\end{array}\right) \exp \left(-\frac{\phi}{2} \mathbf{B}\langle 2\rangle\right)
$$

Transformations are applied from the right to the left

Interpolation of rigid body motions

The logarithm of rigid body motions is defined for 3-dimensional base space.

$$
\boldsymbol{S}=\exp \left(\frac{\log (\boldsymbol{M})}{n}\right)
$$

Motion step

Adapted from L. Dorst, D. Fontijine, S. Mann. Geometric algebra
for computer science. Morgan Kaufmann Publishers, 2007.

Interpolation of rigid body motions

The square of a rigid body motion can be computed as the rate of two flats.

$$
\boldsymbol{S}=\exp \left(\frac{1}{2 n} \log \left(\frac{\mathbf{L}_{2}}{\mathbf{L}_{1}}\right)\right)
$$

Motion step

Positive scaling rotor

- The double reflection on two concentric spheres make a positive scale

Using the dual of the spheres as mirrors:
(0) $\frac{1}{2} \rho_{2}^{2} \infty\left(\frac{1}{2} \rho_{1}^{2} \infty\right)=\left(\rho_{1}^{2}+\rho_{2}^{2}\right)-\frac{1}{2}\left(\rho_{1}^{2}-\rho_{2}^{2}\right) 0 \wedge \infty$ Centered on the origin

$$
\begin{aligned}
& =\cosh \left(\frac{\gamma}{2}\right)+\sinh \left(\frac{\gamma}{2}\right) \mathbf{0} \wedge \infty \\
& \equiv \boldsymbol{S} \quad \text { where } \exp \left(\frac{\gamma}{2}\right)=\frac{\rho_{2}}{\rho_{1}}
\end{aligned}
$$

The scaling factor is

$$
\sigma=\frac{\rho_{2}^{2}}{\rho_{1}^{2}}=\exp (\gamma)
$$

Positive scaling rotor

- The double reflection on two concentric spheres make a p The exponential of k-blades for arbitrary metric spaces Using the dual

$$
\begin{array}{r}
\left(0-\frac{1}{2} \rho_{2}^{2} \infty\right) \left\lvert\, \exp \left(\mathbf{A}_{\langle k\rangle}\right)=1+\frac{\mathbf{A}_{\langle k\rangle}}{1!}+\frac{\mathbf{A}_{\langle k\rangle}^{2}}{2!}+\frac{\mathbf{A}_{\langle k\rangle}^{3}}{3!}+\cdots\right. \\
= \begin{cases}\cos \alpha+\frac{\sin \alpha}{\alpha} \mathbf{A}_{\langle k\rangle} & \text { for } \mathbf{A}_{\langle k\rangle}^{2}<0 \\
1+\mathbf{A}_{\langle k\rangle} & \text { for } \mathbf{A}_{\langle k\rangle}^{2}=0, \\
\cosh \alpha+\frac{\sinh \alpha}{\alpha} \mathbf{A}_{\langle k\rangle} & \text { for } \mathbf{A}_{\langle k\rangle}^{2}>0\end{cases} \\
\quad \text { where } \alpha=\sqrt{\operatorname{abs}\left(\mathbf{A}_{\langle k\rangle}^{2}\right) .}
\end{array}
$$

Positive scaling rotor

- The double reflection on two concentric spheres make a positive scale

$$
\mathbf{p}^{\prime}
$$

Using the dual of the spheres as mirrors:
(0) $\frac{1}{2} \rho_{2}^{2} \infty\left(\frac{1}{2} \rho_{1}^{2} \infty\right)=\left(\rho_{1}^{2}+\rho_{2}^{2}\right)-\frac{1}{2}\left(\rho_{1}^{2}-\rho_{2}^{2}\right) 0 \wedge \infty$ Centered on the origin

$$
\begin{aligned}
& =\cosh \left(\frac{\gamma}{2}\right)+\sinh \left(\frac{\gamma}{2}\right) \mathbf{0} \wedge \infty \\
& \equiv \boldsymbol{S} \\
& \quad \text { where } \exp \left(\frac{\gamma}{2}\right)=\frac{\rho_{2}}{\rho_{1}}
\end{aligned}
$$

Exponential form:

$$
\begin{aligned}
\boldsymbol{S} & =\exp \left(-\frac{\gamma}{2} \mathbf{0} \wedge \infty\right)=\cosh \left(\frac{\gamma}{2}\right)+\sinh \left(\frac{\gamma}{2}\right) \mathbf{0} \wedge \infty \\
X^{\prime} & =\boldsymbol{S} X \boldsymbol{S}^{-1}
\end{aligned}
$$

$$
\sigma=\frac{\rho_{2}^{2}}{\rho_{1}^{2}}=\exp (\gamma)
$$

The scaling factor is

General positive scaled rigid body motion

- It can be composed by doing a rotation in the origin, a positive scaling, and following them by a translation

$$
\begin{gathered}
\boldsymbol{M}=\exp \left(-\frac{1}{2} \mathbf{t} \infty\right) \\
\left.\begin{array}{c}
\text { Translation } \\
\text { Poxp }\left(-\frac{\gamma}{2} \mathbf{0} \wedge \infty\right.
\end{array}\right) \exp \left(-\frac{\phi}{2} \mathbf{B}_{\langle 2\rangle}\right) \\
\text { (or combinedive scaling }
\end{gathered} \begin{aligned}
& \text { Rotation } \\
& \text { (or combined scalings) } \\
& \text { (or combined rotations) }
\end{aligned}
$$

Rotation and scaling in the origin commute

The exponential form of orthogonal transformations is easy to remember.

Interpolation of positive scaled rigid body motions

The logarithm of positive scaled rigid body motions is defined for 3-dimensional base space.

$$
\boldsymbol{S}=\exp \left(\frac{\log (\boldsymbol{M})}{n}\right)
$$

Motion step

[^0] for computer science. Morgan Kaufmann Publishers, 2007.

Transversion rotor

- The double reflection on two spheres with a common point make a transversion
- The reflection in the unit sphere, followed by a translation, and by another reflection in the unit sphere also make a transversion

> Using the dual of the unit sphere and a translation:
$\left(0-\frac{1}{2} \infty\right)(1-\mathbf{t} \boldsymbol{\infty})\left(0-\frac{1}{2} \infty\right)=1+0$ t

Translation vector in base space
$=\exp (\mathbf{0} \mathbf{t}) \quad$ A closed-form solution to the logarithm of a general conformal transformation also involving transversion is not yet known.

Lecture VI

Some Applications

Voronoi diagram and Delaunay triangulation

Adapted from L. Dorst, D. Fontijine, S. Mann. Geometric algebra for computer science. Morgan Kaufmann Publishers, 2007.

2-D/3-D pose estimation of different corresponding entities

.
B. Rosenhahn, G. Sommer (2005) Pose estimation in conformal geometric algebra part II: real-time pose estimation using..., J. Math. Imaging Vis., 22:1, pp. 49-70.

Inverse kinematics of a human-arm-like robot

Omnidirectional robot vision

S
C. Lopez-Franco, E. Bayro-Corrochano (2006), Omnidirectional robot vision using

UFRGS conformal geometric computing, J. Math. Imaging Vis., 26:3, pp. 243-260.

Higher dimensional fractals modeling

J. Lasenby et al. (2006), Higher dimensional fractals in geometric algebra, Cambridge University Engineering Department, Tech. Rep. CUED/F-INFENG/TR.556.

Credits

William K. Clifford (1845-1879)

Wolfgang E. Pauli (1900-1958)

David O. Hestenes (1933-)

Hestenes, D. (2001) Old wine in new bottles: a new algebraic framework for computational geometry. In: Geometric algebra with applications in science and engineering, Boston: Birkhäuser, 3-17

Minkowsky space

- It has been well studied to represent space-time in relativity

$$
M=\left(\begin{array}{cccccc}
\mathbf{e}_{1} & \mathbf{e}_{2} & \cdots & \mathbf{e}_{d} & \mathbf{e}_{+} & \mathbf{e}_{-}
\end{array} \begin{array}{cccccc}
\text { The negative dimension is } \\
\text { employed to represent time. }
\end{array}\right.
$$

Lecture VI

So, what is next?

Drawbacks

- There are some limitations yet
- Versors do not encode all projective transformations

Projective

However, there are other models of geometry

- Conic space and conformal conic space
- Created by Perwass to detect corners, line segments, lines, crossings, y-junctions and t-junctions in images

C. B. U. Perwass (2004) Analysis of local image structure using..., Instituts für Informatik und Praktische Mathematik der Universität Kiel, Germany, Tech. Rep. Nr. 0403.

Drawbacks

- Efficient implementation of GA is not trivial
- Multivectors may be big (2^{n} coefficients)
- Storage problems
- Numerical instability
- Custom hardware is optimized for linear algebra
- There is an US patent on the conformal model
A. Rockwood, H. Li, D. Hestenes (2005) System for encoding and manipulating models of objects, U.S. Patent 6,853,964.

Concluding remarks

- Consistent framework for geometric operations
- Geometric elements as primitives for computation
- Geometrically meaningful products
- Extends the same solution to
- Higher dimensions
- All kinds of geometric elements
- An alternative to conventional geometric approach
- It should contribute to improve software development productivity and to reduce program errors

Introduction to Geometric Algebra

 Extra IIILeandro A. F. Fernandes laffernandes@inf.ufrgs.br

Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

Orthogonal projection behavior

The projection of a flat produces the expected element

Circle projected ontho a plane

$(L\rfloor П) / П$
Straight line projected ontho a plane

Straight line projected ontho a sphere

An ellipse is not represented by a blade in the conformal model

Intersection of two spheres

[^0]: Adapted from L. Dorst, D. Fontijine, S. Mann. Geometric algebra

