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Checkpoint 

Lecture VI 

2 



Checkpoint 

 Euclidean vector space model of geometry 

 Euclidean metric 

 Blades are Euclidean subspaces 

 Versors encode reflections and rotations 
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Checkpoint 

 Solving homogeneous systems of linear equations 
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Each equation of the system is the 

dual of and hyperplane 

that passes through the origin. 



Checkpoint 

 Rotation rotors as the exponential of 2-blades 

 

 

 

 The logarithm of rotors in 3-D vector space 
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Checkpoint 

 Rotation interpolation 
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Adapted from L. Dorst, D. Fontijine, S. Mann. Geometric algebra 

for computer science. Morgan Kaufmann Publishers, 2007. 

𝑺 = exp
log 𝑹

𝑛
 

𝑹 =
𝑹2

𝑹1
 

Rotation step (it is applied n times) 

Rotor to be interpolated 

𝑹1 𝑋  

𝑹2 𝑋  



Checkpoint 

 Homogeneous model of geometry 

 Euclidean metric 

 d-D base space, (d+1)-D representational space 
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3-D Representational Space 

The extra basis vector is 

interpreted as point at origin. 



Checkpoint 

 Homogeneous model of geometry 

 Euclidean metric 

 d-D base space, (d+1)-D representational space 

 Blades are oriented flats or directions 
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3-D Representational Space 



Checkpoint 

 Homogeneous model of geometry 

 Euclidean metric 

 d-D base space, (d+1)-D representational space 

 Blades are flats or directions 

 Rotors encode rotations around the origin 
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The rotation formula applies to 

any blade (flat or direction). 

 

It is the same for direct or dual blades. 



Checkpoint 

 Homogeneous model of geometry 

 Euclidean metric 

 d-D base space, (d+1)-D representational space 

 Blades are flats or directions 

 Rotors encode rotations around the origin 

 Translation formula 
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The translation formula applies to 

any blade (flat or direction). 

 

For dual elements the formula is 

slightly different. 



Checkpoint 

 Homogeneous model of geometry 

 Euclidean metric 

 d-D base space, (d+1)-D representational space 

 Blades are flats or directions 

 Rotors encode rotations around the origin 

 Translation formula 

 Rigid body motion formula 
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It also applies to 

any blade (flat or direction). 

 

For dual elements the formula 

is slightly different. 



Today 

 Lecture VI – Fri, January 22 

 Conformal model 

 Concluding remarks 
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Conformal Model of Geometry 

Lecture VI 
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Motivational example 
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Adapted from L. Dorst, D. Fontijine, S. Mann. Geometric algebra 

for computer science. Morgan Kaufmann Publishers, 2007. 

1. Create the circle through points c1, c2 and c3 

 

 

2. Create a straight line L 

 

 

3. Rotate the circle around the line and show n 

    rotation steps 

 

 

 

4. Create a plane through point p and 

    with normal vector n  

 

 

5. Reflect the whole situation with the line and 

    the circlers in the plane 

Dual plane 



Dual plane 

Motivational example 
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Adapted from L. Dorst, D. Fontijine, S. Mann. Geometric algebra 

for computer science. Morgan Kaufmann Publishers, 2007. 

1. Create the circle through points c1, c2 and c3 

 

 

2. Create a straight line L 

 

 

3. Rotate the circle around the line and show n 

    rotation steps 

 

 

 

4. Create a plane through point p and 

    with normal vector n  

 

 

5. Reflect the whole situation with the line and 

    the circlers in the plane 

4. Create a sphere through point p and 

    with center c  

 

 

5. Reflect the whole situation with the line and 

    the circlers in the sphere 

The only thing that is 

different is that the 

plane was changed 

by the sphere. 

The reflected line 

becomes a circle. 

The reflected rotation 

becomes a scaled rotation 

around the circle. 
Dual sphere 



Points in a Euclidean space 

 A Euclidean space has points at a 

well-defined distance from each other 

 

 

 Euclidean spaces do not really have an origin 

 It is convenient to close a Euclidean space by 

augmenting it with a point at infinity 
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The point at infinity is: 

• The only point at infinity 

• A point in common to all flats 

• Invariant under the Euclidean transformations 



Points in a Euclidean space 

 A Euclidean space has points at a 

well-defined distance from each other 

 

 

 Euclidean spaces do not really have an origin 

 It is convenient to close a Euclidean space by 

augmenting it with a point at infinity 
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The point at infinity is: 

• The only point at infinity 

• A point in common to all flats 

• Invariant under the Euclidean transformations 

In the conformal model of geometry 

these properties are 

central because such model is designed 

for Euclidean geometry. 



Base space and representational space 

 The arbitrary origin is achieved by assign an extra 

dimension to the d-dimensional base space 

 The point at infinity is another extra dimension 

assigned to the d-dimensional base space 
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d-dimensional base space 

(d + 2)-dimensional 

representational space 

Point at origin Point at infinity 



Example 
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2-D Base Space 

4-D Representational Space 

Here, the 4-D representational space is 

seem as homogeneous coordinates, 

where the    coordinate is set to one. 



Example 
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2-D Base Space 

4-D Representational Space 

Basis vector interpreted 

as point at origin. 



Example 
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2-D Base Space 

4-D Representational Space 

Basis vector interpreted 

as point at infinity. 



Euclidean points as null vectors 

 Euclidean points in the base space are 

vectors in the representational space 

 The inner product of such vectors is directly 

proportional to the square distance of the points 
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We know that                        . 

As a consequence,              . 

For a unit finite point 

and the point at infinity,                  . 
Here,     and     are vectors in the 

representational space. They encode unit 

finite points     and     , respectively. 



Non-Euclidean metric matrix 
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Unit finite point 



Finite points 
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Euclidean points define 

a paraboloid in the     -direction 

4-D Representational Space 

General finite point 

2-D Base Space 



Conformal Primitives 

Lecture IV 
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Conformal primitives 

 Oriented rounds 

 Point pair, circle, sphere, etc. 

 Oriented flats 

 Straight line, plane, etc. 

 Frees 

 Directions 

 Tangents 

 Directions tangent to a round at a given location 
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Oriented rounds 

 They are built as the outer product 

of finite points 

 Examples 

 Point pair (0-sphere) 
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2-D Base Space 

4-D Representational Space 



Oriented rounds 

 They are built as the outer product 

of finite points 

 Examples 

 Point pair (0-sphere) 

 Circle (1-sphere) 
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2-D Base Space 

4-D Representational Space 



Oriented rounds 

 They are built as the outer product 

of finite points 

 Examples 

 Point pair (0-sphere) 

 Circle (1-sphere) 

 Sphere (2-sphere) 

 etc. 
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k-Sphere from k+2 finite points 

(d-1)-Sphere around c through p 

k-Sphere with center point c, radius ρ, 

and the direction of the carrier flat 



Oriented flats 

 They are built as the outer product 

of finite points and the point at infinity 

 Examples 

 Flat point (0-flat) 
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2-D Base Space 

4-D Representational Space 



Oriented flats 

 They are built as the outer product 

of finite points and the point at infinity 

 Examples 

 Flat point (0-flat) 

 Straigh line (1-flat) 
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2-D Base Space 

4-D Representational Space 



Oriented flats 

 They are built as the outer product 

of finite points and the point at infinity 

 Examples 

 Flat point (0-flat) 

 Straigh line (1-flat) 

 Plane (2-flat) 

 etc. 
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k-Flat from k+1 finite points 

k-Flat from support point and k–D direction 

Hyperplane from unit normal and 

distance from the origin 

Hyperplane with normal n, through p Mid-hyperplane between unit p and q 



Flats are rounds with infinite radius 
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Frees 

 A free element is interpreted as a direction 

 A free is built as the outer product of vectors in the 

base space and the point at infinity 
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where 

They are invariant to translation 

because they are perpendicular 

to the assumed origin vector. 



Tangents 

 They are subspaces tanget to the 

paraboloid defined by the finite points 

 Point-like interpretation 

and also direction information 
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2-D Base Space 

4-D Representational Space 

Tangent at p with a given direction 

Tangent to a round at the point p 



Universal Orthogonal Transformations 

Lecture VI 
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Euclidean transformations as versors 

 Euclidean transfromations preserve the 

point at infinity, i.e., 

 

 

 The condition on a versor to be Euclidean is 

 

 

 The simplest and most general Euclidean versor is 
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This vector is a dual hyperplane. 

As an 1-versor it encodes a reflection. 



Reflection versor 

 The dual of hyperplanes and hyperspheres 

act as mirrors 
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Adapted from L. Dorst, D. Fontijine, S. Mann. Geometric algebra 

for computer science. Morgan Kaufmann Publishers, 2007. 

All Euclidean transformations 

can be made by multiple reflections 

in well-chosen planes. 



Translation rotor 

 The double reflection on two paralell planes 

with same orientation make  a translation 
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Translation vector 

Using the dual of the planes as mirrors: 

Unit normal vector 

in base space 



Translation rotor 

 The double reflection on two paralell planes 

with same orientation make  a translation 
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Using the dual of the planes as mirrors: 

The exponential of k-blades for arbitrary metric spaces 



Translation rotor 

 The double reflection on two paralell planes 

with same orientation make  a translation 
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Translation vector 

Using the dual of the planes as mirrors: 

Unit normal vector 

in base space 

Exponential form: 



Rotation rotor 

 The double reflection on two non-paralell planes 

through the origin make a rotation 
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Using the dual of the planes as mirrors: 

Exponential form: 

Rotation angle Unit normal vector 

in base space 

The distance from 

the origin is zero 



General rigid body motion 

 It can be composed by first doing a rotation in the 

origin and following it by a translation 
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Translation 

(or combined translations) 

Rotation 

(or combined rotations) 

Transformations are applied 

from the right to the left 



Interpolation of rigid body motions 
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Adapted from L. Dorst, D. Fontijine, S. Mann. Geometric algebra 

for computer science. Morgan Kaufmann Publishers, 2007. 

The logarithm of rigid body motions 

is defined for 3-dimensional 

base space. 

Motion step 



Interpolation of rigid body motions 
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Adapted from L. Dorst, D. Fontijine, S. Mann. Geometric algebra 

for computer science. Morgan Kaufmann Publishers, 2007. 

The square of a rigid body motion can be 

computed as the rate of two flats. 

Motion step 



Positive scaling rotor 

 The double reflection on two concentric spheres 

make a positive scale 
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Using the dual of the spheres as mirrors: 

Centered on 

the origin 

The scaling factor is 



The scaling factor is 

Positive scaling rotor 

 The double reflection on two concentric spheres 

make a positive scale 
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Using the dual of the spheres as mirrors: 

The exponential of k-blades for arbitrary metric spaces 



Positive scaling rotor 

 The double reflection on two concentric spheres 

make a positive scale 
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Using the dual of the spheres as mirrors: 

Exponential form: 

Centered on 

the origin 

The scaling factor is 



General positive scaled rigid body motion 

 It can be composed by doing a rotation in the origin, a 

positive scaling, and following them by a translation 
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Translation 

(or combined translations) 

Rotation 

(or combined rotations) 

Rotation and scaling in the origin commute 

The exponential form of orthogonal 

transformations is easy to remember. 

Positive scaling 

(or combined scalings) 



Interpolation of positive scaled 

rigid body motions 
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Adapted from L. Dorst, D. Fontijine, S. Mann. Geometric algebra 

for computer science. Morgan Kaufmann Publishers, 2007. 

The logarithm of positive scaled 

rigid body motions is defined 

for 3-dimensional base space. 

Motion step 



Transversion rotor 

 The double reflection on two spheres with a common 

point make a transversion 

 The reflection in the unit sphere, followed by a 

translation, and by another reflection in the unit 

sphere also make a transversion 
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Translation vector 

in base space 
A closed-form solution to the 

logarithm of a general 

conformal transformation also involving  

transversion is not yet known. 

Using the dual of the unit sphere and a translation: 



Some Applications 

Lecture VI 
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Voronoi diagram and Delaunay triangulation 
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Adapted from L. Dorst, D. Fontijine, S. Mann. Geometric algebra 

for computer science. Morgan Kaufmann Publishers, 2007. 

Vononoi diagram 

in base space 

Delaunay 

triangulation 

in base space 

Convex hull of the 

represented points 

Dual of the convex hull 

The rays are tangent vectors 



2-D/3-D pose estimation of different 

corresponding entities 

54 
B. Rosenhahn, G. Sommer (2005) Pose estimation in conformal geometric algebra part II: 

real-time pose estimation using…, J. Math. Imaging Vis., 22:1, pp. 49–70. 



Inverse kinematics of a human-arm-like robot 

55 
D. Hildenbrand et al. (2005), Advanced geometric approach for graphics and visual 

guided robot object manipulation, in Proc. of the Int. Conf. Robot. Autom., pp. 4727–4732. 



Omnidirectional robot vision 

56 
C. Lopez-Franco, E. Bayro-Corrochano (2006), Omnidirectional robot vision using 

conformal geometric computing, J. Math. Imaging Vis., 26:3, pp. 243-260. 



Higher dimensional fractals modeling 

57 
J. Lasenby et al. (2006), Higher dimensional fractals in geometric algebra, Cambridge 

University Engineering Department, Tech. Rep. CUED/F-INFENG/TR.556. 



Credits 
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Minkowsky space 

 It has been well studied to represent 

space-time in relativity 
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The negative dimension is 

employed to represent time. 

The conformal model 

is just another way to see it: 
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So, what is next? 

Lecture VI 

60 
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Drawbacks 

 There are some limitations yet 

 Versors do not encode all projective transformations 

61 

Projective 

Affine 

Linear 
Similitude 

Perspective 

Rigid / Euclidean 

Isotropic Scaling 

Scaling 

Reflection 

Shear 

Translation 
Identity 

Rotation 



However, there are other models of geometry 

 Conic space and conformal conic space 

 Created by Perwass to detect corners, line segments, 

lines, crossings, y-junctions and t-junctions in images 

62 
C. B. U. Perwass (2004) Analysis of local image structure using…, Instituts für Informatik 

und Praktische Mathematik der Universität Kiel, Germany, Tech. Rep. Nr. 0403. 



Drawbacks 

 Efficient implementation of GA is not trivial 

 Multivectors may be big (2n coefficients) 

 Storage problems 

 Numerical instability 

 Custom hardware is optimized for linear algebra 

 There is an US patent on the conformal model 

63 
A. Rockwood, H. Li, D. Hestenes (2005) System for encoding and  

manipulating models of objects, U.S. Patent 6,853,964. 
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Concluding remarks 

 Consistent framework for geometric operations 

 Geometric elements as primitives for computation 

 Geometrically meaningful products 

 Extends the same solution to 

 Higher dimensions 

 All kinds of geometric elements 

 An alternative to conventional geometric approach 

 It should contribute to improve software development 

productivity and to reduce program errors 
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Orthogonal projection behavior 
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Adapted from L. Dorst, D. Fontijine, S. Mann. Geometric algebra 

for computer science. Morgan Kaufmann Publishers, 2007. 

Circle projected 

ontho a plane 

Straight line projected 

ontho a plane 

Straight line projected 

ontho a sphere 

An ellipse is not represented by 

a blade in the conformal model 

The projection of a flat 

produces the expected element 



Intersection of two spheres 
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Adapted from L. Dorst, D. Fontijine, S. Mann. Geometric algebra 

for computer science. Morgan Kaufmann Publishers, 2007. 

Real 

Circle 

λ > 0 

Tangent 

Space 

λ = 0 

Imaginary 

Circle 

λ < 0 
It also holds for 

sphere and plane! 

Intersection point 

Scalar used for testing 


