Frontiers of Computer Graphics

Jonas Gomes
jonas@impa.br

Visgraf Laboratory - IMPA
Rio de Janeiro
www.visgraf.impa.br

Computer Graphics

- From data to images?
- Many correlated areas
Visualization

• **Light, Camera, Simulation!**
• **Construct the scene**
 • Modeling the Geometry
• **Illuminate the scene**
 • Model the light sources
• **Photograph the scene**
 • Shading computation
 • Image generation

Motivation

• **Motivation**
 • Photorealistic images
Visualization

- **Applications**
 - Special Effects
 - Virtual Worlds
 - Movie industry
 - Television industry
 - Theme parks
 - Arcade games
 - Medical images
 - Engineering (CAD/CAM)

State of the art in plant modeling
Some Math Notation

- **Spaces of Graphical Objects**
 - Space of images
 - Space of audio signals
 - Space of geometric models
 - etc.
- **Operators on Spaces of Graphical Objects**

Some Math Notation

- **Graphical Objects**
 - Surface
 - Volume
 - Image
- **Shape + Attributes**
 \[f : U \subset \mathbb{R}^m \rightarrow \mathbb{R}^n \]
Some Math Notation

- **Visualization operator**
 - \(T: \{\text{geometric models}\} \rightarrow \{\text{Images}\} \)

- **Direct Problem**
 - Given \(T \) and \(X \), compute \(Y = TX \)

- **T computation (Rendering)**
 - Camera position
 - Scene geometry and attributes
 - Illumination information

Computer Vision

- **Human Perception**
 - Eye: Captures the scene
 - Brain: Reconstructs the scene

- **Representation and reconstruction**
 - Discretization
 - Reconstruction
Computer Vision

- Ambiguity in the Reconstruction

Computer Vision

- Cognitive reconstruction
 - Knowledge + Information
 - Intelligent reconstruction
- Artificial intelligence
- Primary vision
- High level vision
Some Math Notation

- **Computer Vision**
 - $T: \{\text{Images}\} \rightarrow \{\text{Models}\}$
- **Inverse Problems**
 - Given Y and T, compute X from $Y = TX$
 - Given X and Y, compute T, from $Y = TX$
- **A simple example**
 - The virtual referee
 - Video

Two important problems

- How to represent a graphical object?
- How to reconstruct a graphical Object?
Ambiguous Reconstruction

- An example using geometric models

Computer Graphics

- Time comes into play

Motion Modeling

Dynamic Vision

Image sequence (Video)

Motion Visualization

Video Processing
Animation

- **Continuous deformation of graphical objects**
 - Warping
 - Morphing
 - Video
- **Book and site**
 - “Warping and Morphing of Graphical Objects”
 - http://www.visgraf.impa.br/morph/

Some Math Notation

- **Visualization**
 - Direct problem
 - $T: \{\text{Motion modeling}\} \rightarrow \{\text{video}\}$
- **Dynamic Vision**
 - Inverse problems
 - $T: \{\text{Video}\} \rightarrow \{\text{Motion models}\}$
Computer Vision

- **Some Inverse Problems**
 - Recover Camera information
 - Camera calibration
 - Recover Geometry
 - Recover Motion
 - Recover Illumination

Computer Graphics

- **The Human factor**
 - User interface
 - Perceptibility and semantics
 - Semiotics
 - Gestalt Psychology
 - Computer Vision
 - Interactivity
 - Immersibility
The Human Factor

• **Interactivity**
 • Input and output devices
 • Haptic devices
 • Haptic mouse
 • Force feedback devices
• **Ivan Sutherland (1963)**

Computer Graphics

• **Immersibility**

“I see a computer display as a window in Alice’s wonderland in which a programmer can depict either objects that obey well-known natural rules or purely imaginary objects that follow laws he has written into his program”

I. Sutherland, 1970, Scientific American
Immersibility

- **Mixed reality**

 Augmented Reality
 Real environment
 Virtual environment

- **Virtual reality x Real Virtuality**

Real Virtuality

Scene from *101 Dalmatians* by Walt Disney
Modeling meets Vision

- Evolution of modeling paradigms
 - From geometry to cognition

Visualization Meets Vision

- Classical visualization paradigm
 - From models to image
 - Visualization = Models + Simulation
 - Direct problem
- New visualization paradigm
 - From Image to Models
 - Visualization = Samples + Reconstruction
 - Inverse problems
Computer Graphics

- **Main problems**
 - Real time x Huge data sets
 - “So many data so little power”
 - Devise good, very good, representation and reconstruction techniques
 - graphical objects
 - operators between graphical objects

Visgraf Laboratory - IMPA

http://www.visgraf.impa.br