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Modeling on Triangulations with Geodesic Curves

Abstract In the �rst part of this paper we de�ne a new
class of curves, calledgeodesic B�ezier curves, that are
suitable for modeling on manifold triangulations. As a
natural generalization of B�ezier curves, the new curves
are as smooth as possible. In the second part we discuss
the construction of C0 and C1 piecewise B�ezier splines.
We also describe how to perform editing operations, such
as trimming, using these curves. Special care is taken to
achieve interactive rates for modeling tasks. The third
part is devoted to the de�nition and study of convex
sets on triangulated surfaces. We derive the convex hull
property of geodesic B�ezier curves.

Keywords Geodesic B�ezier Curve� Discrete Geodesic�
de Casteljau Algorithm � Spline Curves � Free-Form
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1 Introduction

Designing free-form curves is a basic operation in Geo-
metric Modeling. Doing so in Euclidean space is a widely
studied problem; see [7,10] and many others. The prob-
lem becomes harder, however, if we wish to design on
a curved geometry, such as triangulated surfaces. Most
existing work for the later task, relies on imposing a suit-
able parameterization, which is usually an unintuitive
approach that leads to a series of \trial and error" oper-
ations. We pursue instead a direct design in the geometry
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of the surface, an approach that has received much less
attention.

In this paper we introduce a new class of curves that
are suitable for free-form modeling directly on the ge-
ometry of a manifold mesh. De�ned by means of the de
Casteljau Algorithm, they are a natural generalization
of B�ezier curves. Thus, we call them \Geodesic B�ezier
Curves". In order to stablish the convex hull property
of these curves, we give an intrinsic de�nition of convex
sets on manifold triangulations, and make a deep study
of their properties. As a side result we prove the conver-
gence of our geodesic algorithm [21].

1.1 Overview

We begin in section 2 with a summary of related work.
In section 3 we give a brief overview of the state of the
art of Discrete Geodesic computation and present a sim-
ple description of the algorithm given by [21], which will
be used in sections 4 and 5. After summarizing classi-
cal B�ezier curves theory, we de�ne in section 4 the new
class of curves and compare them to the classical ones. A
study of their use in modeling operations is done in sec-
tion 5. Section 6 describes the construction of piecewise
B�ezier spline curves on triangulations. In section 7 we
de�ne convex sets in the context of triangulations and
study their properties. Convex hulls in that context are
presented in section 8. In section 9 we present the two
applications of convex sets mentioned above. Finally in
section 11 we give concluding remarks and indicate po-
tential further research.

1.2 Notation and Preliminary De�nitions

A polygonal line � on a triangle meshS is de�ned as a
sequence of nodesf � 0; � 1; : : : ; � n g � S such that every
line segment � i � i + i is also contained inS. We refer to
polygonal vertices as nodes, in order to di�erentiate them
from mesh vertices.
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Fig. 1 Modeling on the surface of a cow. From left: the control polygons of some curves and a C1 spline, the corresponding
curves, a region is �lled and other is trimmed, �nal result.

Curves de�ned over a triangulation S cannot be smooth,
the only exception being when they are completely de-
�ned on a planar part of S, which is usually not the case.
However, as continuity is a local property we can ana-
lyze the geodesic behavior of a curveC on S by looking
at the intersection of the neighborhoods of each curve
point with S.

We de�ne Ck continuity at points having a neighbor-
hood isometric to a plane as the usualCk continuity in
the unfolding of that neighborhood. In particular, this
applies to points lying in the interior of mesh edges and
faces.

In the case of mesh vertices, continuity is not well
de�ned. However, geodesic B�ezier curves in practice are
well behaved when they pass through mesh vertices. Fur-
thermore, we are currently investigating the theoretical
aspects of curve continuity at mesh vertices.

2 Related Work

The de Casteljau algorithm has been adapted to Rieman-
nian manifolds using geodesic interpolation [24]. How-
ever, it has been applied only to some surfaces where
geodesic computation is relatively easy, such as spheres
or Lie groups; see [8,27] and the references therein for
details. The only modeling operation studied in those
works is the construction of cubic splines. Furthermore,
trimming seems to be very hard to perform in this set-
ting. We de�ne curves using the same idea as in [24], but
we consider manifolds triangulations.

Another generalization of cubic splines to smooth
manifolds is given in [11,26]. The curves are de�ned by
interpolating a set of knot points on the surface, mini-
mizing an energy functional. These results are also appli-
cable to triangulations, but they require the computation
of local smooth approximations. If the position of a knot
is changed, the whole curve must be recomputed since
there is no local control of its shape. On the other hand,
the interpolation of tangent vectors or higher derivatives
has not been studied. Using geodesic B�ezier curves we
can overcome these di�culties, and it becomes possible
to prescribe derivatives at knot points and to have local
control of the segments of the B�ezier spline curve.

Trimming is a very important application in CAGD.
This operation is usually done by means of a parame-

terization. One has to �gure out which curve in the pa-
rameter space corresponds to the desired curve on the
surface, which is generally a di�cult problem. Most of
the time these curves are obtained as the result of CSG
operations, or more general surface intersections [17,6].
An approach for subdivision surfaces is to modify the
original (coarse) mesh in order to obtain a trimmed limit
surface [3,19]. Our trimming operations are done directly
on the mesh and no parameterization is needed.

Recent works [31,30,29] de�ne a general framework
for curve subdivision schemes. Geodesic B�ezier curves
�ts into this framework. However, smoothness of limit
curves is only studied { and proved { in the case of
smooth manifolds, considering meshes as an approxima-
tion of smooth surfaces, what is not always the case. For
example, a potential user may be interested in modeling
on a coarse mesh instead of a re�ned one. Besides, mod-
els with sharp features are best approximated with non-
smooth surfaces. In this paper we analyze the smooth-
ness of geodesic B�ezier curves in the context of triangular
meshes, and also how to handle modi�cations in the po-
sition of control points at interactive rates, what is not
done in those works. Our results are also applicable to
the other geodesic-based subdivision schemes �tting into
this framework.

3 Geodesic Curves

The problem of computing locally shortest geodesic paths
on discrete geometries, particularly meshes, has been
addressed in many works [2,5,12,15,23], and it is still
subject of active research [21,28]. Most algorithms use
the so-called Continuous Dijkstra Technique. The algo-
rithm proposed in [21] adopts an iterative curve correc-
tion strategy that we believe is suitable to our curve de-
sign algorithm, with the goal of reaching responsive user
interaction without increasing storage space. We will go
back to this subject in section 4.

3.1 Iterative Curve Correction Algorithm

In this section we summarize the Iterative Curve Correc-
tion Algorithm; for details see [21]. Geodesic computa-
tion is performed in two steps. In the �rst step, an initial
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polygonal curve, joining two points in the mesh, is com-
puted using a front propagation strategy. In the second
step, all the nodes of the initial curve are put in a priority
queue; then the node with largest error is corrected and
the error at neighboring nodes is updated. This process
is repeated until a small error is attained.

Nodes are constrained to lie on mesh edges since a
geodesic must coincide with a line segment in the interior
of each face, and the extremes of the curve are added
as new vertices to the mesh. Errors at curve nodes are
computed based on discrete geodesic curvature [25]. A
node position is corrected by unfolding a subset of the
faces adjacent to it and moving it to the line joining its
neighboring nodes in the unfolded part of the mesh.

Since our curves are allowed to pass through the in-
terior of a face { not necessarily as a line segment { we
would need to add new vertices to the mesh any time
we subdivide a control polygon. However, a careful im-
plementation would allow geodesic nodes to lie in the
interior of mesh faces, leaving the underlying mesh in-
tact.

4 Geodesic B�ezier Curves

B�ezier curves are of great importance when modeling
on Rn . A natural question is how to generalize them to
curved geometries. In this section we propose a class of
curves that generalize B�ezier curves to manifold triangu-
lations.

4.1 Classical B�ezier Curves

Given n+1 control points P0; P1; : : : ; Pn in Rd, they de-
�ne a curve given by the following parametric expression:

P(u) =
nX

i =0

�
n
i

�
(1 � u)n � i ui Pi ; 0 � u � 1; (1)

P is known as B�ezier curve of degreen, and the set of
control points P0; P1; : : : ; Pn forms its control polygon.
Note that P interpolates the two extreme control points
P0 and Pn , being tangent to the control polygon at these
points. It also \imitates" the form of the control poly-
gon, making the task of designing with B�ezier curves
very intuitive. That's the reason why B�ezier curves are
so popular for CAD/CAGD applications. More informa-
tion about this subject can be found in [7,10]; �gure 2
shows an example of a B�ezier curve of degree 3.

The de Casteljau Algorithm [4] provides a geometric
procedure to evaluate a B�ezier curve at any parameter
u 2 [0; 1], using repeated linear interpolation:

Algorithm 1 : de Casteljau

Input: The control points P0; P1; : : : ; Pn and a
parameter u 2 [0; 1]

Output: The point P(u).
step 1. for i = 0 ; : : : ; n set P [0]

i (u) = Pi
step 2. for j = 1 ; : : : ; n

for i = j; : : : ; n
P [j ]

i = interpolate (P [j � 1]
i � 1 (u); P [j � 1]

i (u); u)
step 3. P(u) = P [n ]

n

b

b

b

b

b

b b b b b b

b

Fig. 2 A subdivision step of a control polygon and its B�ezier
curve.

In step 2 we use the functioninterpolate (A; B; u ), which
performs a linear interpolation between A and B with
parameter u: interpolate (A; B; u ) = (1 � u)A + uB .

From de Casteljau's algorithm one can de�ne a sub-
division scheme whose limit curve is the B�ezier curve
given by the control polygon. Given a parameter value
u and a control polygon, we can obtain two new control
polygons for the segmentsP([0; u]) and P([u; 1]):

Algorithm 2 : Subdivision of a control polygon

Input: The control points P0; P1; : : : ; Pn and a
parameter u 2 [0; 1]

Output: Two sets of control points de�ning P([0; u])
and P([u; 1]).

step 1. deCasteljau ((P0; P1; : : : ; Pn ); u).
step 2.

P([0; u]) = bezier (P [0]
0 ; P [1]

1 ; : : : ; P [n ]
n )

P([u; 1]) = bezier (P [n ]
n ; P [n � 1]

n ; : : : ; P [0]
n )

Evaluating the curve at u, using de Casteljau's algo-
rithm, provides the intermediary interpolated points P [j ]

i .
The output (step 2) are the control polygons de�ning
both (B�ezier) segments of the curve. Figure 2 shows a
subdivision step of the control polygon of a degree 3
B�ezier curve.

Algorithm 2 provides the rule for the subdivision
scheme converging to the curve. Additionally, this scheme
can be made adaptive by stopping the subdivision when-
ever a control polygon can be considered as \almost
straight".
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4.2 B�ezier Curves on Triangulations

Geodesic B�ezier curves are de�ned by means of the sub-
division algorithm for classical B�ezier curves. Given a
control polygon P0; P1; : : : ; Pn on a surfaceS, we want
to compute a curve C on S interpolating P0 and Pn ,
whose shape is controlled by the position of the interior
points P1; P2; : : : ; Pn � 1.

The curve C is de�ned as the limit of the subdivision
scheme given in algorithm 2 of section 4.1. The main
di�erence is that the sides of the control polygon are
no longer line segments, but geodesics connecting the
control points. This imposes the necessity of modifying
the interpolation

Algorithm 3 : Interpolation on Triangulations

Input: A manifold triangulation S, two points Q1 and
Q2 on it and a parameter u 2 [0; 1]

Output: A point Q on S interpolating Q1 and Q2.
step 1. 
 = ComputeGeodesic (Q1; Q2).
step 2. Q = the point of 
 such that

d
 (Q1; Q) = ud
 (Q1; Q2)

step on algorithm 1. The equivalent to linear interpola-
tion in the geometry of the surface is the interpolation
along geodesic lines. Algorithm 3 describes the interpo-
lation step in the case of manifold triangulations. In this
algorithm, d 
 (A; B ) computes the distance betweenA
and B along 
 . Note that since 
 is a polygonal line, it
is very simple to perform step 2.

To compute an approximation of C, we can use the
subdivision adaptive algorithm. It stops at some pre-
scribed level of subdivision or when the control polygon
can be considered as a geodesic segment; i.e., when all of
its control vertices have error smaller than a prescribed
tolerance. Figure 3 shows some geodesic B�ezier curves
along with their control polygons.

Fig. 3 Some geodesic B�ezier curves. Control polygons are
also shown in the Cube model.

The use of de Casteljau's algorithm in the de�nition
of geodesic B�ezier curves makes them a generalization of
planar B�ezier curves. Note that a geodesic on a plane is

a straight line. Therefore, when the triangulation is pla-
nar both concepts coincide; see for example the curves
designed on the (planar) faces of the cube in �gure 3.
As in the case of classical B�ezier curves, we have a pa-
rameterization of our curves with parameter u 2 [0; 1].
Evaluation at any particular parameter value can be per-
formed easily by subdividing the corresponding control
polygon at each level of subdivision. Previous calcula-
tions can be used to evaluate at new parameter values,
this can be useful when performing many evaluations.

It is known that shortest geodesics are not unique
on triangulations. Consequently, the use of a di�erent
subdivision parameter may lead to a di�erent curve. So
geodesic B�ezier curves depends on the control points and
the chosen subdivision parameteru. To our experience,
the curves obtained with di�erent values of u are very
close to each other. We are currently studying the theo-
retical issues related to the choice ofu. In practice, se-
lecting a �xed value of u gives us a subdivision curve. In
this paper we have chosenu = 0 :5 and therefore we have
a midpoint subdivision scheme. All �gures of this paper
were generated using this scheme.

Geodesic algorithm selection
There are several algorithms to compute geodesics

(see section 3) and any of them could be used both to
compute geodesic B�ezier curves and to perform user in-
teraction. We chose the algorithm of [21] for two rea-
sons. In �rst place, it relies on the correction of an initial
curve assumed to be close to the true geodesic. Since de
Casteljau's algorithm is a sort of corner-cutting process,
a part of each control polygon can be used as initial curve
to compute the geodesics needed in the computation of
control polygons in the following level of subdivision. On
the other hand, during interaction the new control poly-
gons are very close to the previous ones and they can be
computed very fast. Using other algorithms as [28] also
permits very fast interaction, but at the cost of storing
a tree for each control point. The tree associated with a
control point must be updated any time its position is
changed.

4.3 Properties of Geodesic B�ezier Curves

Geodesic B�ezier curves share some properties with clas-
sical ones. The proofs of the following propositions can
be found in [20].

Proposition 1 Geodesic B�ezier curves interpolate P0
and Pn and are tangent to the control polygon at these
points.

Proof Consider the �rst line segment of the �rst side
(geodesic line) of the control polygon. It is entirely con-
tained in a face F and for N large enough, the initial
sub-polygon at level N is entirely contained in F . So,
the corresponding curve segment is a segment of a pla-
nar B�ezier curve, which is tangent to the �rst segment of
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the N th level subpolygon, that is contained on the �rst
side of the 1st level polygon. So, the curve is tangent to
its control polygon at P0; the same applies toPn . ut

Each interior point of an edge has a neighborhood which
is isometric to an open disc in the plane. By means of
this isometry, we can analyze the behavior of a curve
when passing through the interior of mesh edges. If the
curve is smooth in the plane, it will have smooth appear-
ance in the mesh. The following proposition address this
property of geodesic B�ezier curves.

Proposition 2 A geodesic B�ezier curve has (at least)
C1 continuity when intersecting an edge of the mesh.

Proof Let s0 be the parameter value corresponding to
the point P(s0) of C intercepting the edgee of meshS.
We have two cases: (i) forN large enough, there is a
segmentCN;i of C completely contained in the union of
the two faces adjacent toe, and such that P(s0) 2 CN;i ;
or (ii) case (i) does not hold ands0 = k=2N , where k is
an integer such that 0< k < N .

In case (i) C is C1 at P(s0), since it is a point of a
plane Bezier curve de�ned in the unfolding of e. If case
(ii) holds, there is an N large enough such that each of
the two polygons corresponding to levelN of subdivision
is contained in one of the two faces adjacent to edgee.
So, in the unfolding of the two faces, the two segments of
control polygons at level N with P(s0) as endpoint are
collinear and have the same length. As a consequence the
plane spline de�ned by these two control polygon is (at
least) C1 at its junction point P(s0), and henceC is C1

at P(s0) too. ut

Proposition 3 Each connected component of the inter-
section of a geodesic B�ezier curve with the interior of a
mesh face is aC1 plane curve, except for (at most) a
countable set of points, where it isC1.

Proof Let f be a face ofS, and s the parameter value
corresponding to the point P(s) of C

T
f .

As in the preceding proposition, there are two cases:
(i) for N large enough, there is a segmentCN;i of C com-
pletely contained in f and such that P(s) 2 CN;i ; or
(ii) case (i) does not hold and s = k=2N , where k is an
integer such that 0 < k < N .

In case (i) C is C1 at P(s), since it is a point of a
plane Bezier curve de�ned in f . If case (ii) holds, there
is an N large enough such that each of the two polygons
corresponding to levelN of subdivision is contained inf .
So, the two segments of control polygons at levelN with
P(s) as endpoint are collinear and have the same length.
As a consequence the plane spline de�ned by these two
control polygon is (at least) C1 at its junction point P(s),
and henceC is C1 at P(s) too.

Note that the set of points satisfying condition (ii) is
�nite in almost all the cases. When Cpass through a ver-
tex of f , this set can be in�nite. However, it is countable,
since it is a subset off s = k=2N ; s.t. k; N 2 N; k < N g
which is a countable set. ut

As a consequence of previous propositions we have that
C is as smooth as possible in the interior of faces and
when crossing a mesh edge. The analysis of the passage
of C through mesh vertices is more complicated and is
part of our current research.

The Convex Hull property of B�ezier curves has a
huge importance in modeling. The adaptive version of
de Casteljau's algorithm relies on this property. It is
not trivial to give a proper de�nition of convex setin
a curved geometry. However, in section 7 we give de�ni-
tions of convex set and convex hull that are appropriated
for the study of our curves. Propositions 6 and 9 guar-
antee the correctness of the adaptive version of geodesic
B�ezier curves.

5 Modeling

In order to model with geodesic B�ezier curves we must
be able to perform the usual modeling operations. More-
over, the user should be allowed to modify a curve at
interactive rates. In this section we �rst describe how
to e�ciently handle user interaction. Following that, we
present a simple algorithm for region �ll and trimming.

5.1 User Interaction

Fast user interaction is very important in free-form de-
sign operations. The user should be able to modify any
previously de�ned curve by changing the position of some
of its control points. This operation should be as fast and
easy as possible; for example, it must be possible to select
and drag any control point using the mouse. Every time
the position of a control point is changed, its neighbor-
ing sides in the control polygon should be recomputed.
These (at most two) sides are geodesic lines and we must
recompute them very fast, at least approximately. Each
new (recomputed) geodesic is very close to the old (orig-
inal) one, since one of their extremes remain �xed while
the other one is very close to the corresponding extreme
in the old curve. Hence we use, as initial approxima-
tion for the algorithm described in section 3, the origi-
nal curve after adding to it the line segment joining its
extreme to the new control point position. Because the
initial segment is very close to the recomputed one, this
update process runs very fast. Additionally, we force the
geodesic computation to perform fewer iteration steps
during interaction since the user only needs to have a
good idea of the shape of the control polygon. When the
user releases the mouse, full-precision geodesics are com-
puted and the curve is then recomputed. Figure 4 shows
three di�erent positions for the middle node during user
interaction with a third order curve.
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Fig. 4 Igea model: Four di�erent positions for the middle control point in a c urve with three control points.

5.2 Region Fill and Trimming

We are now concerned with the problem of identifying a
piece of a surfaceS limited by one or more curves de�ned
on it. Solving this problem allows us to trim (cut) a piece
of S, to paint it with a certain color, or to map a texture
to it. Given a point P in S, typically obtained by a mouse
click, the idea is to use a 
ood-�ll algorithm, propagating
a wavefront from this point until it reaches the boundary
curves. Algorithm 4 describes how to identify the faces
in the region R that contains the point P.

Algorithm 4 : Identify region

Input: A point P 2 S
Output: The set SR = f f 2 f faces ofSg; s.t.f

T
R 6= ;g

step 1. f = face containing P.
step 2. push (f ,L R )
step 3. while L R is not empty

g = pop (L R )
push (g,SR )
for h 2f neighbors of gg

if (can propagate (g 7! h))
push (h,L R )

In algorithm 4 above, L R is an auxiliary list of faces. The
function can propagate returns true if the following
three conditions hold:

1. h does not belong toL R ,
2. h does not belong toSR , and
3. R contains the edge common tog and h, or part of

it.

In practice it is not necessary to know if condition 3
holds. Instead we only consider the faces that are adja-
cent to edges intersecting regionR, see �gure 6. When
L R becomes empty we have inSR all the faces contained
in the interior of R and also the faces cutting the bound-
ary curves. They are colored red and green respectively
in �gure 5 (left). Once we have identi�ed the set SR of
faces cuttingR, we must decide which part of the bound-
ary faces belongs toR. To do that, during propagation
we mark each portion of an edge intersectingR, see �g-
ure 6. With this information we can decide which part of

�
�

�
�

�

Fig. 6 Propagation directions. Arrows indicate by what
edges can the wave be propagated. Bullets indicate what por-
tion of the edges belong to R (shadowed region).

the planar subdivision de�ned by the boundary curves
in each face belongs toR.

The above described process can easily be performed
if the seed point P belongs to a face which is entirely
contained in R. If P belongs to a face crossed by the
boundary of R, we subdivide it until P is inside an inte-
rior face (see �gure 7). For texture mapping or trimming

�P �P

�
�

Fig. 7 Locating seed point

it is not su�cient to identify the part of S (i.e., the re-
gion R) selected by the user. It is also necessary to have
a model of it. In those cases we can triangulate the cor-
responding part of each face crossed by the boundary of
R. Figure 8 shows some regions �lled or trimmed in the
Cube and the Bunny models.

6 Piecewise B�ezier Spline Curves

A powerful tool for modeling is the use of piecewise spline
curves, allowing local control of the shape of the curve
as well as faster computations by means of segments of
low degree. We want to compute piecewise spline curves
of geodesic B�ezier curves , so next we investigate how to
guarantee some continuity at junction points.
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Fig. 5 Region �nding stages. Left: set SR with boundary faces highlighted. Middle and Right: the region R after eliminating
the part of boundary faces not belonging to it.

Fig. 8 Filled and trimmed regions. Up: Trimmed Cube.
Down: Stanford's bunny with two trimmed regions and a
�lled one.

As usual,C0 continuity is reached by de�ning the �rst
control point of a segmentCi +1 to be the same as the last
control point of its previous segmentCi . To guaranteeC1

continuity is harder because we must have the last side
of the control polygon of Ci aligned with the �rst side of
the control polygon of Ci +1 . Moreover, the length of these
two sides must be the same. This means that we need to
locate three control points in the same geodesic line. In

Fig. 9 C0 and C1 splines on the surface of the bunny.

other words, the position of the two �rst control vertices
of the segmentCi +1 are determined by the position of
the control vertices of the previous segmentCi .

Given the control polygon of the i th segment Ci of
a spline curve C, how to compute the two �rst control
points P i +1

0 and P i +1
1 of Ci +1 ? Its �rst control point P i +1

0
is the same as the last control pointP i

m of Ci . The sec-
ond one, P i +1

1 , is hard to �nd because we do not know
how to continue the geodesic line betweenP i

m � 1 and P i
m .

For smooth surfaces we can compute the unique geodesic
passing by a point in a direction. This is not the case for
shortest geodesics on meshes. Nevertheless the straight-
est geodesics de�ned by [25] have this nice property. For
that reason we de�ne the �rst side of the control poly-
gon ofCi +1 as the straightest geodesic continuing the last
side of the control polygon ofCi . It is known [25] that if
a straightest geodesic does not pass by a spherical ver-
tex, it is also a shortest geodesic. So we can expect that
most of the times our control polygon will be de�ned by
means of shortest geodesics. It is important to note that
all the properties of section 4.3 are also satis�ed if we re-
place one or more of the shortest geodesics by straightest
ones. Thus, the relaxation we did to the de�nition of the
control polygon, in order to have C1 continuity, is more
than justi�ed.
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Finally note that modifying the position of P i
m � 1

modi�es the position of P i +1
1 and vice versa. In the last

case, the last side of the control polygon ofCi will be a
straightest geodesic. Modifying the position of the junc-
tion point conduce us to modify at least the position of
one of the control points P i

m � 1 and P i +1
1 . Figure 9 show

the use ofC1 splines to write in the surface of the Stan-
ford's bunny model. The middle curve in �gure 1 is a C1

spline, composed by 8 B�ezier segments.

7 Convex Sets on Triangulations

The adaptive version of de Casteljau's algorithm relies
in the convex hull property of classical B�ezier curves. In
order to have such a property for geodesic B�ezier curves
we need �rst to establish what do convex setmean in the
context of triangualtions.

To de�ne convex sets on triangulations requires some
care. A naive de�nition, as the intersection of the sur-
face with a convex set, will not work because it ignores
the intrinsic geometry of the surface. There are di�erent
de�nitions of convex sets on triangulations, obtained by
imitating the behavior of plane convex sets [2], but they
are too restrictive. For example, non-optimal shortest
geodesics are not convex in the usual sense. Our de�ni-
tion allow them to be convex.

In this section we de�ne convex sets based on the
geodesic curvature of the boundary curves, and derive
in next section the concept of convex hull in manifolds.
Those de�nitions are very useful to prove the conver-
gence of the geodesic algorithm given by the authors
in [21], and the convex hull property of geodesic B�ezier
curves.

7.1 Discrete Geodesic Curvature

Polthier and Schmies [25] de�nedstraightest geodesicsas
curves with zero geodesic curvature

� g(P) =
2�
�

� �
2

� � r

�
= �

2�
�

� �
2

� � l

�
;

where� is the total angle at P and � r and � l are the angle
formed by the curve to the right and left side respectively.
In order to obtain a similar characterization for shortest
geodesics, we must employ an alternative de�nition of
discrete geodesic curvature:

De�nition 1 The discrete geodesic curvatureof a polyg-
onal curve at a given point P is given by the following
expression.

� s(P) =

8
><

>:

0; if � (P) > 2�; � r (P) � �
and � l (P) � �

1 ; if � (P) < 2� and � r (P) = � l (P)
� g(P); otherwise

Remark 1 We use the notation� s to distinguish this new
de�nition of discrete geodesic curvature from Polthier's
one. The subindexs stands for shortest.

Remark 2 Boundary points are treated as hyperbolic, as
done in [21].

With this alternative de�nition of geodesic curvature
at hand, we can characterize discrete shortest geodesics
on triangulations:

Proposition 4 A polygonal curve� contained in a man-
ifold triangulation S is a shortest geodesic if and only if
its geodesic curvature� s is identically zero.

Proof Let � be a shortest geodesic onS and P a node
of � . If P does not coincide with a mesh vertex, or co-
incides with an euclidean one, then� r and � l are equals;
consequently� s(P) = � g(P) = 0. If P coincides with a
hyperbolic vertex then both � r and � l must be greater
than � , hence� s(P) = 0. Finally, P cannot coincide with
a spherical vertex.

On the other hand, suppose that� have zero geodesic
curvature � s everywhere. That means that a small per-
turbation in the position of any vertex will increase the
length of � . Thus, it is a local minimum of the length
functional and consequently a shortest geodesic. ut

7.2 Convex Sets

It is known that if the boundary of a plane convex set is
a smooth curve, then its curvature does not change its
sign [9]. If the boundary is a polygonal line, then at each
vertex the angle corresponding to the interior of the set
is smaller that the exterior one. Based on these facts, we
de�ne convex sets on triangulations.

De�nition 2 Let C be a connected subset of a surface
S. C is convex if its boundary @C can be parametrized
by a closed curve� : I �! @C such that:

1. 8t 2 I � s(� (t)) � 0, and
2. the interior of set C is always situated in the left side

of � .

Remark 3 If we replace'� ' by ' � ' and 'left' by 'right' in
de�nition 2, we get an equivalent de�nition of convex set.

Remark 4 We do not require the curve � parameteriz-
ing @C to be simple. Otherwise, a simple geodesic curve
would not be convex. Figure 10 shows two convex sets in
a plane with a hole where the boundary curves are not
simple.

Remark 5 Convex sets in a plane triangulation (without
holes) are also convex in the usual sense. Unfortunately,
the usual properties of planar convex sets do not hold
in the general case for convex sets on triangulations. In
section 8 we are going to see an example where the in-
tersection of two convex sets is not connected. Besides,
there are convex sets having two di�erent points that
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Fig. 10 In a plane with a hole, two convex sets whose bound-
ary curves are not simple.

cannot be joined by an optimal shortest geodesic. How-
ever, a convex set always contains a shortest geodesic,
not necessary optimal, joining two any points in it.

Proposition 5 Let C be a convex set on the surfaceS
and let A and B be two points of C. Then there exists
a shortest geodesic joiningA and B that is completely
contained in C.

Proof Consider the surfaceS0 de�ned by the set C. There
exists a geodesic� joining A and B on S0, see [23]. We
must prove that � is a geodesic onS.

If � does not touch the boundary of S0 then it is
also a geodesic onS. Suppose now that the pointP 2 �
belongs to the boundary ofS0. If we choose an orientation
of � such that the angle � l of � at P is the one in the
interior of S0, then � l must be greater than or equal to
� , because boundary points are treated as hyperbolic
vertices. This means that the angle� l of @C at P is also
greater than or equal to � , but as C is a convex set then,
looking to @C as a curve onS, the angle � r of @C at
P must also be greater than or equal to� . Hence,P is
a hyperbolic or euclidean point on S and the geodesic
curvature � s(P) of � at P is also zero when looking to
� as a curve onS. This means that � is a geodesic on
S. ut

Remark 6 The converse of proposition 5 does not hold.
In �gure 11 we show a non-convex set, contained in a
plane with a hole, where every pair of points can be
joined by a shortest geodesic.

8 Convex Hull

We want to de�ne convex hull as the intersection of con-
vex sets. To do that, we must study if convexity is pre-
served by this set operation. Unfortunately, this is not
true; for example, the intersection of two meridians in a
sphere results in a two-point set which is not even con-
nected.

Fig. 11 A set in plane with a hole. It contains a shortest
geodesic between any pair of points although it is not convex.

Although intersection does not preserve convexity, we
still can use it to de�ne convex hull. The following lemma
states that each connected component of the intersection
is a convex set:

Lemma 1 The intersection of two convex setsC1 and
C2 is a collection of convex sets.

Proof We know that the intersection of two convex sets
may have more than one connected component. LetC be
one of such connected components; we must prove that
it is a convex set.

The boundary of C is formed by a sequence of curves
belonging to the boundaries ofC1 and C2. So, if we prove
that � s remains smaller than or equal to zero at the inter-
section of the boundaries ofC1 and C2, then we are done.
But this is true because the left angle� l (@C(P)) at those
points is smaller that both � l (@C1(P)) and � l (@C2(P)),
and thus the geodesic curvature of@C at P is also nega-
tive:

� s(P) =
2�
�

� �
2

� � r

�
=

2�
�

� � l � � r

2

�
� 0:

The above formula holds everywhere, except at some hy-
perbolic vertices where� l is greater than � , but in those
cases� s(P) = 0. Note that if P coincides with a spheri-
cal mesh vertex, then� l is necessary smaller than� r . ut

After lemma 1 we can de�ne the convex hull of curves
on manifold triangulations:

De�nition 3 Let � be a curve de�ned on a surfaceS.
The convex hull � of � is the intersection of all convex
sets containing � .

� =
[

� �C i

Ci :

Remark 7 Note that we cannot extend the concept of
convex hull in manifolds to arbitrary sets. For instance,
the convex hull of two poles of a sphere would be the two
points, which is not a connected set. However, this con-
cept is well de�ned for curves, for which the convex hull
is always a convex connected set. The following proposi-
tion will be useful in section 9.
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Proposition 6 Given a simple polygonal curve� , join-
ing two di�erent points A and B , the area of its convex
hull A (� ) is equal to zero if and only if � is a simple
shortest geodesic.

Proof If � is a simple shortest geodesic, then it is a
convex set and consequently� = � , so A(� ) = 0.

Now assume thatA (� ) = 0, and suppose it is not a
shortest geodesic. There exists an interior nodePi 2 �
where� s(P) 6= 0. Hence, the set bounded by the geodesic
joining Pi � 1 and Pi +1 , and the segment of� between
Pi � 1 and Pi +1 belongs to � . But the area of that set,
which is a subset of� , is not zero, which is a contradic-
tion. ut

After de�ning convex hull, it is interesting to know how
its shape depends on the curve. Next lemma answer this
question for polygonal curves.

Lemma 2 The boundary of the convex hull� of a po-
lygonal curve � is composed of a sequence of geodesic
segments whose extremes are nodes of� .

Proof We know that � s(@� (:)) � 0, suppose that� s(P) <
0 at a point P 2 @� . If P =2 � , then we can join two
points of its neighboring sides in@� by a geodesic seg-
ment � 0 not crossed by � . Substituing the portion of
@� between those points by� 0 we obtain a convex set
C0 � � containing � , but then � would not be the con-
vex hull of � . ut

If the boundary @C of a convex set is a polygonal curve,
we can distinguish two type of nodes in it, those where
the geodesic curvature� s is zero, and those with non-
null geodesic curvature. From now on, we refer to the
last ones as vertices. Doing this, we can look at@C as a
polygon whose sides are geodesics.

9 Applications

In this section we study two important applications of
the theory of convex hulls on triangulations presented
in last sections. One of them is the establisment of the
convex hull property of geodesic B�ezier curves, which
is very important for the adaptive implementation. The
other result is the proof of convergence of the geodesic
algorithm [21] given in a previos work. We present this
result here due to its importance, even when it is not
directly related to geodesic B�ezier curves.

9.1 On the Metric of Discrete Surfaces

In section 9 we will need some metric properties of tri-
angulated surfaces as distance and limit. In this section
we study them.

The length functional L (� ) = length( � ) can be used
to de�ne a distance in a connected triangulation:

De�nition 4 The distancebetween two pointsP and Q
on a connected discrete surfaceS is de�ned as the length
of an optimal shortest arc joining P and Q.

� (P; Q) = inf
� P Q �S

f L (� P Q )g

It is known {see [23]{ that if S is connected there always
exists a shortest arc joiningP and Q. Hence the distance
� is well de�ned. The surfaceS, provided with � , becomes
a metric space [1,2]. A metric like this one, where the
distance between two points is the same as the length of
the shortest arcs joining them, is calledintrinsic.

A metric space M is complete if every Cauchy se-
quence converges to a point ofM . For a space provided
with an intrinsic metric we can give an equivalent de�-
nition of completeness, see [1].

De�nition 5 A metric of a spaceM is calledcompleteif
the Weierstrass theorem holds forM , i.e, if each in�nite
bounded set inM has an accumulation point.

The following lemma is rather obvious and is prob-
ably proved somewhere else. However, we have not seen
it proved and will give a proof here.

Lemma 3 A discrete surfaceS, provided with its intrin-
sic metric, is a complete metric space.

Proof From de�nition 5, it is enough to prove that every
in�nite set has an accumulation point. 1 Suppose that the
set A 2 S is in�nite. Since S has a �nite number of faces,
there is a facef 2 S which has in�nite points of A. As in
f the euclidean and intrinsic metric coincide, A has an
accumulation point on f , and so it has an accumulation
point on S. ut

The following proposition will be useful in next section.

Proposition 7 Let fCn g1
n =0 be a sequence of closed sets

in a discrete surfaceS such that Cn +1 � C n and Cn 6= ; .
There exists a closet setC 6= ; such that C =

T 1
n =0 Cn

and for all " > 0 there exists ann 2 N such that if N � n
then � (P; C) < " for all P 2 CN .

Proof The closed setC exists and is non-empty, see [18].
Lets prove the second part. Suppose that it does not
hold, i.e, there is an" > 0 such that 8n 2 N there exists
a point Pn 2 Cn such that � (Pn ; C) � " . Consider the
sequencef Pn g, from lemma 3 it has a subsequencef Pkn g
convergent to a point P and � (P; C) � " . Given a k 2 N,
Pkn 2 Ck for all kn � k and henceP 2 Ck , so P 2 C and
� (Pn ; C) = 0. But this is a contradiction with � (P; C) � " .

ut

1 Since we are considering the case of discrete surfaces,
which are bounded, every in�nite set on them is also bounded.
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9.2 Results

The de�nition of convex hull of curves on triangulations
help us to study the convergence of the geodesic algo-
rithm presented by the authors in [21]; and also to stab-
lish the convex hull property of geodesic B�ezier curves.

In the rest of this section, f � n gn 2 N denotes the se-
quence generated by the geodesic algorithm {see [21].
The following lemma will be used later:

Lemma 4 In a triangulation S, � n +1 belongs to the
convex hull of � n .

Proof At each vertex correction, for example atPnj , the
sequencePn;j � 1Pnj Pn;j +1 goes to the geodesic segment
joining the points Pn;j � 1 and Pn;j +1 , which is entirely
contained in the convex hull of the current curve � n . So,
each vertex of� n +1 belongs to the convex hull of� n and
so does� n +1 . ut

Proposition 8 If every � n is simple, then the sequence
converges to a geodesic line.

Proof Let Cn be the convex hull of � n . Consider the set

C =
1\

n =0

Cn :

From lemma 4 we know that Cn
T

Cn +1 = Cn +1 . From
proposition 7 we know that C exists and is closed. Each
Cn is convex and so doesC.

We must prove that A (C) = 0 since, by proposition
6, only simple geodesic lines have convex hull with area
equal to zero.

A B

C

Cn

� n

Fig. 12 The convex hull of � n is very close to C.

By proposition 7, for an arbitrary " > 0 we can �nd a
natural number n such that all the vertices in the bound-
ary @Cn of Cn are at distance smaller than " from the
boundary @C of C.

Suppose thatA (C) 6= 0. Each vertex of @Cn is also a
node of� n , see lemma 2. There is ann large enough such
that the vertices of @Cn are very close to@Cand such that
for each nodePnj 2 � n \ @Cn the geodesic line joining
its neighborsPn;j � 1 and Pn;j +1 in � n intersectsC. When
we compute the next curve � n +1 , it will pass through
C, and as Pin belongs to the boundary of the convex

hull of � n , there will be points of C outside of Cn +1 , but
this is impossible since8n C � C n ) C � C n +1 . As
a consequenceA(C) must be zero and hence� n

�!
n !1 �

which is a geodesic. ut

Proposition 8 looks very restrictive, since we require that
every curve � n be simple. However, this seems to be the
general case. When we look for an initial approxima-
tion, using FMM, the resulting curve � 0 is certainly sim-
ple. After that, each correction is performed in a neigh-
borhood of a curve node and it us unlikely that self-
intersection will occur.

To �nish this section, we present a very important
application of convex hulls: the convex hull property of
geodesic B�ezier curves. The following proposition is re-
sponsable for the correctness of the adavtive version of
geodesic B�ezier curves.

Proposition 9 Geodesic B�ezier curves satisfy the con-
vex hull property. This is, a geodesic B�ezier curve is com-
pletely inside the convex hull of its control polygon.

Proof This proposition is a direct consequence of lemma
4. ut

10 Convex Sets with Non-Polygonal Boundaries

Up to now, all the material in this section was mainly
dedicated to polygonal curves. In fact, as far as this
work is concerned, polygonal curves are enough. Never-
theless, we can extend our study about convexity to sets
with non-polygonal boundaries. We can also extend it
to smooth manifolds. For the sake of completeness, we
consider them here.

Consider a piecewise smooth curve� on a triangu-
lation S2. At points where the curve is smooth, it has
neighborhoods which are isometric to a piece of plane,
so we de�ne the geodesic curvature� s of � at those
points as the corresponding curvature in the unfolding.
At non-smooth points, we de�ne � s as the curvature cor-
responding to the polygonal line de�ned by the left and
right tangent on these points, when it exists. Otherwise
� s is not de�ned.

On smooth manifolds, the geodesic curvature is al-
ways de�ned for smooth curves. Consider a piece-wise
smooth curve 
 , which is simple and closed. In points
where 
 is not smooth, we can look at the corresponding
left and right tangent lines in the plane tangent to the
manifold. If the angle3 between them is smaller than� ,
and the geodesic curvature at smooth points does not
change its sign, then the set bounded by
 is convex.

2 Note that polygonal curves are special cases of piecewise
smooth curves.

3 This angle is measured in the same direction of the curve.
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11 Conclusion

We have de�ned geodesic B�ezier curves, which are a gen-
eralization of Euclidean B�ezier curves to manifold trian-
gulations, and studied some properties of them. They
have the advantage of being de�ned geodesically, which
makes them independent of any parameterization. We
have shown how to use them to de�ne pieces or regions
of a surface, allowing trimming, local texture mapping,
and region coloring. Fast user interaction joined with the
possibility of constructing C0 and C1 splines make of
them a powerful tool for free-form modeling on manifold
triangulations.

11.1 Further Research

There remain some theoretical issues associated with
geodesic B�ezier curves; it will be very interesting to see
which other properties of classical B�ezier curves hold for
the new curves and also which concepts can be gener-
alized to the geometry of manifold triangulations. For
example, it is not clear how to de�ne the control poly-
gons if we want C2 continuity or higher. The continuity
of the curves at mesh vertices has to be studied. Is there
something equivalent to a�ne invariance of B�ezier curves
in the case of geodesic B�ezier curves?

There are some works about geodesic computation
in geometries other than manifold triangulations. So, we
can de�ne geodesic B�ezier curves for point clouds [22],
for Riemannian manifolds [16], and for smooth surfaces
[14,13]. The next step is to study how to handle user
interaction in a fast way and what properties of classical
B�ezier curves are inherited by geodesic B�ezier curves on
those geometries. A good point to start could be subdivi-
sion surfaces where the extension of the ideas in this pa-
per seems to be straightforward, with the nice property
that user interaction could be handled at low resolution,
making it faster.
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