Interactive specification of 3D displacement vectors using arcball

S. Pinheiro, J. Gomes and L. Velho
Visgraf Laboratory
IMPA - Rio de Janeiro
http://www.visgraf.impa.br

Problem

- Interactive specification of 3D displacement vectors
 - Translation specification
Our approach

- No special input devices
 - Mouse + keyboard
- One-window interface
 - No more info than necessary
- “WIMP” interface with good motor control

Some applications

- Warp specification in 3D-Space
- Editing geometric models
- Normal vector specification
- 3D grid editing
Possible solutions

- Two-point specification
 - Use a 3D point locator
 - Specify initial and final points
 - Good for accurate specifications
- Use of special input device
 - Not always available

Previous work

- Two-point specification
 - Use a triad cursor as a locator
 - Use cursor plane as a locator
Previous work

- **Use of special input device**

Use of 2D input devices

- **Choose good parameterizations**
 - Virtual trackball
Revisiting our problem

- Displacement vector
 - Point + direction + scale

Direction specification

- rotation of the unit normal
Our choice

- Arcball
- Better motor control
 - Kinesthetic correspondence between mouse movement and rotation
 - Path independence
- Novel use of the arcball interface

Arcball, Rotation and Quaternions

- Unit quaternion
 \[q = [t, x, y, z] = [t, (x, y, z)] = [\cos \theta, v \sin \theta] \]

- Rotation of angle \(2\theta\) around \(\mathbf{u}\)
 \[R(\alpha) = qaq^{-1} \]
Arcball

\[v_0, v_1 \in S^2 \subset \mathbb{R}^3 \]

\[p_1 = [0, v_0], \quad p_2 = [0, v_1] \]

\[\frac{p_1}{p_2} = [\langle v_0, v_1 \rangle, v_0 \wedge v_1] \]

The Arcball Sphere

![Diagram of the Arcball Sphere](image)
Arcball sphere for displacement vector

- Proper coordinate system for arcball sphere
 - Adapted to the camera position

Basis computation

\[e_2 = \frac{u - \langle u, n \rangle n}{\|u - \langle u, n \rangle n\|} \]
The implementation

- Windows 95/NT
- OpenGL
- Interface design: FLTK

The Interface Window

![Image of the Interface Window]
Application 1:

- Surface warping with direct specification

Input surface
Select the point

Zoom in
Specify direction (Arcball)

Specify length
Compute the warp

Surface Warping

- Video
Application 2:

- **Smooth Subdivision surfaces with normal control**
 - H. Biermann, D. Levin and D. Zorin
 NYU Media Research Lab

- **Video**

Warping software

- **Surface warping**
 - http://www.visgraf.impa.br/morph/software/

- **Subdivision surface**