Fulldome …and beyond!

Luiz Velho
IMPA

Outline

- Basic Concepts
 - Mathematical Fundamentals
 - Computational Framework
- Omnidirectional Video Production
 - Augmented 360 Panoramas
- Immersive Interactive Visualization
 - IMPA’s Dome

Math Fundamentals

- Plenoptic Function
- Light Fields
- Parametrization and Projections
- Omindirectional Images
Plenoptic Function

Complete description of Visual Information in a 3D environment

- $I_x = P(x, y, z, \theta, \phi, t)$
 - Holographic Image
- $P : \mathbb{R}^3 \times S^2 \times \mathbb{R} \rightarrow \mathcal{E}$
 - 6D Phase Space

Light Field

A Slice of the Plenoptic Function

- Structured Sampling of P
 - example: Camera

Panoramic Surfaces

Generalized Support for Visual Information

- Data Representation
 - example: Cylindrical Panorama
Parametrizations
Maps 2D Surface to Planar Domain

- Coordinate Systems
 - example: Cylindrical Mapping

Omnidirectional Image
The Set of All Rays incident at a point (x,y,z)

- Spherical Light Field = 360 degrees

360° Image Formats

- Parametrizations of the Sphere
 - Stereographic
 - Lat-Long
 - Cube Map
 - Azimuthal
Stereographic Projection

- Conformal Mapping (preserves angles)

![Image of Stereographic Projection](image1)

singularity infinite plane

Equirectangular Projection

- Latitude-Longitude Mapping (e.g., Flickr)

![Image of Equirectangular Projection](image2)
natural coordinate system distortion toward poles

Most Convenient Format

Cube Mapping

- 6 Perspective Projections

![Image of Cube Mapping](image3)
suitable for CG rendering
Azimuthal Projection

- Hemispherical Mapping

Dome Master standard

Omnidirectional Cameras

- Catadioptric
- Dioptric
- Multi-Camera

Catadioptric Cameras

- Mirror-Based (parabolic or hyperbolic)
Dioptric Cameras

- Fish Eye Lenses

Multi-Camera Systems

- Point Grey's Ladybug (6 Perspective Cameras)

Production

- Assuming
 - Equirectangular Representation
 - Multi-Camera System

- Pipelines
 - Live Action
 - Computer Graphics
Live Action Production

• Pipeline

Capture + Stitch → Process

Editing → Convert + Display

Data

• Tools
 - After Effects, ...
 - Premiere / Final Cut / ...
 - xRes / Digital Sky / ...

(Interactive) CG Production

• Pipeline

Model → Render or Simulate → Data

Convert + Display → Sense

• Tools
 - Blender
 - LuxRender
 - etc...

Augmented 360° Panoramas

Photorealistic Rendering of Omnidirectional Images, combining Real and Synthetic Scenes

• Current Research at VISGRAF Lab
• Collaboration with
 - Aldo Zang
 - Dalai Felinto
HDR RGB-D Panorama

- Radiance

- Depth

Environment Model

- Derived Data:

 Scene Geometry

 Light Map

CG Integration

- Blender Plugin
Synthetic Objects

- Insertion into the Scene

Augmented Reality

- Full Simulation of Real-Virtual Interaction

Photorealistic Rendering

- Blender to LuxRender
ARLuxRender
- Lux Render Plugin

Fish Eye Output
- Cycles

Final Results
- Equirectangular
- Dome Master
Technique pipeline

- Environment capture
- Scene modeling
- Depth map
- Illumination setup
- Synthetic elements
- Integration and rendering

Applications

- What can we do with this technology?
 - Special Effects for FullDome
 - Realistic Lighting Simulation
 - Real-Time Augmented Reality

Authoring Issues

- Passive
 - Movies
- Interactive
 - Google Street View
- Immersive
 - AR Cinema
Film Language

- Conventional Cinema
 - HD Television
 - Theater Panavision
- 360 Degrees Dome
 - Omnimax
 - Dome Master

Conventional Cinema

- Camera Moves

 Track | Pan / Tilt | Zoom

 ![Diagram](image1)

Full Dome

- Camera Moves

 Track | Pan / Tilt | Zoom

 yes | no | ?

 ![Diagram](image2)
360° Image Transforms

Complex Plane Transformations for Manipulation and Visualization of Spherical Panoramas

- Current Research at VISGRAF Lab
- Collaboration with
 - Leonardo Koller Sacht

Möbius Transformations

- Complex Map
 \[M : \mathbb{C} \mapsto \mathbb{C} \]

Transformation Pipeline

- Hyperbolic Möbius Mapping (i.e., scaling)
Example

- Extreme Zoom

Comparison

- Alternative Projections

 input panorama

 equirectangular projective mercator möbius

Video 1

Different scales applied to an equi-rectangular image
More than Meets the Eye

- Beyond Full Dome Theater!
- Active / Dynamic / Reconfigurable..

IMPA's Dome

Immersive Visualization of Spherical Interactive Panoramic Content for Augmented Reality

- Experimental 360° Playground
- Complete I/O Setup
- Real-Time Rendering

★ Planned for 2014

Location

Horta, RJ

Est. Dona Castorina, 110
Environment

- Integrated with IMPA's building and Nature

Mockup

Floor Plan
Specifications

- Size: 8 meters diameter
- Projection: 360° x 140°
- Sound: 7.2 Surround
- Reconfigurable Viewing Space
- Tracking: Head and Full Body
- Depth Cameras: RGBD

Projection

- Hemispherical Mirror + 4 Projectors

Simulation

- Projector Coverage
Reconfigurable Floor

- Two-Level Base

![Level 1](image1)

Level 2 - FOV

- Center View (~140° Vertical Field of View)

![Level 2 - FOV Center View](image2)

Level 2 - FOV

- Border View

![Level 2 - FOV Border View](image3)
Envisioned Applications

- 360° Cinema
- Full Scale Games
- Immersive Visualization
- Parallel Reality
- Interactive Exploration

Future Research

- Authoring Systems
 - Integrated Media
 - Natural Interfaces
- Production Techniques
 - Live Action + CG
 - Real Time Simulations

Some Examples

- Relativistic Visualization
 - 2007
 - collaboration with: Marcelo Cicconet
- Exploring 3D Manifolds
 - current work
 - collaboration with: Pierre Berger, Pierre-Yves Fave, Alex Bordignon, Sergio Krakowski
Hyperbolic 3D Orbifold

Questions?