Moebius Transformations and Omnidirectional Images

Luiz Velho
IMPA

Outline

- Moebius Transformations
 - Mathematical Fundamentals
- Omnidirectional Images
 - Basic Concepts
 - 360 Panoramas
- Applications
 - Wide Field of View

Moebius Transformations

Möbius Transformations

• Complex Map

\[M : \mathbb{C} \mapsto \mathbb{C} \]

• Definition:

\[M(z) = \frac{az + b}{cz + d} \]

with

\[(ad - bc) \neq 0\]

Anatomy of \(M \)

• Decomposition into Sequence

\[m_4 \circ m_3 \circ m_2 \circ m_1(z) \]

\[
m_1(z) = z + \frac{d}{c} \quad \text{translation}
\]

\[
m_2(z) = \frac{1}{z} \quad \text{inversion}
\]

\[
m_3(z) = \frac{(be-ad)z}{cz} \quad \text{scaling and rotation}
\]

\[
m_4(z) = z + \frac{a}{c} \quad \text{translation}
\]

Fixing the Inversion

• Point at Infinity \(\infty \)

\[
\frac{1}{\infty} = 0 \quad \frac{1}{0} = \infty
\]

• Extended Complex Plane

\[\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\} \]
Riemann Sphere

- Stereographic Projection

\[\hat{z} = (\theta, \phi) \mapsto z = \cot(\phi/2) e^{i\theta} \]

Complex Projective Space

- Isomorphism

\[z \mapsto w = M(z) \quad \text{in} \quad \hat{C} \]

induces

\[\hat{z} \mapsto \hat{w} \quad \text{in} \quad \Sigma \]

- Geometry and Algebra

\[
\begin{align*}
\text{Riemann} & \quad \longleftrightarrow \quad \text{Complex} \\
\text{Sphere} & \quad \text{Plane}
\end{align*}
\]

Properties of \(M \)

- Projective Linear Group (Lie Group) \(PGL(2, \mathbb{C}) \)

- Preservation of:
 - Circles (lines to circles)
 - Angles (conformal)
 - Symmetry (w.r.t. circles)

Defining \(M \)

- Images of 3 points (e.g)

\[
(a/b), \quad (b/c), \quad (c/d)
\]

- Ratios and Uniqueness

\[
\frac{az + b}{cz + d} = M(z) = \frac{ka z + kb}{kcz + kd}
\]

- Normalization

\[(ad - bc) = 1\]

Homogeneous Coordinates

- Ratio of 2 complex numbers

\[
z = \frac{\delta_1}{\delta_2} = [\delta_1, \delta_2] \neq [0,0]
\]

- Two Cases

\[
\begin{align*}
\delta_2 & \neq 0 \\
& \qquad z = \frac{\delta_1}{\delta_2}
\end{align*}
\]

\[
\begin{align*}
\delta_2 & = 0 \\
& \qquad z = \infty
\end{align*}
\]

Cross Ratio

- The unique

\[z \mapsto w = M(z) \]

sending

\[q, r, s \mapsto \tilde{q}, \tilde{r}, \tilde{s} \]

\[
\frac{(w - \tilde{q})(\tilde{r} - \tilde{s})}{(w - \tilde{s})(\tilde{r} - \tilde{q})} = [w, \tilde{q}, \tilde{r}, \tilde{s}] = [z, q, r, s] = \frac{(z - q)(r - s)}{(z - s)(r - q)}
\]

- Theorem:

If \(M \) maps 4 points \(p, q, r, s \mapsto \tilde{p}, \tilde{q}, \tilde{r}, \tilde{s} \)

then, the cross-ratio is invariant.
Orientation Properties

• Maps Oriented Circles to Oriented Circles
 s.t. Regions are mapped accordingly

Fixed Points

• Solution of
 \(z = M(z) \)

• \(M \) has at most **two** fixed points
 except for \(\text{Id.} \)

• For \(M \) Normalized
 \(\xi_{\pm} = \frac{(a-d) \pm \sqrt{(a+d)^2-4}}{2c} \)

\[M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \]

\[\xi_{\pm} = \frac{(a-d) \pm \sqrt{(a+d)^2-4}}{2c} \]

\[M(z) = Az + B \]

\[z \mapsto e^{i\alpha}z \]

\[z \mapsto \rho e^{i\alpha}z \]

M - Classification

• Fixed Point at Infinity : \(c = 0 \)

 \(M(z) = Az + B \)

• Basic Types
 - Elliptic
 - Hyperbolic
 - Parabolic
 - Loxodromic

Elliptic Transform

• Rotation

 \(z \mapsto e^{i\alpha}z \)

 • two fixed points
 \((0, \infty)\)

Hyperbolic Transform

• Scaling

 \(z \mapsto \rho z \)

 • two fixed points
 \((0, \infty)\)

Loxodromic Transform

• Rotation and Scaling

 \(z \mapsto \rho e^{i\alpha}z \)

 • two fixed points
 (combination of elliptic and hyperbolic)
Parabolic Transform
- Translation
 \[z \mapsto z + b \]
- one fixed point at \(\infty \)

Omnidirectional Images

Basic Concepts
- Plenoptic Function
- Capturing Light Fields
- 360 Panoramas
- Parametrization and Projections

Plenoptic Function
Complete description of Visual Information in a 3D environment
- \(I_\lambda = P(x, y, z, \theta, \phi, t) \)
 Holographic Image
- \(P : \mathbb{R}^3 \times S^2 \times \mathbb{R} \mapsto \mathcal{E} \)
 6D Phase Space

Light Field
A Slice of the Plenoptic Function
- Structured Sampling of \(P \)
 - example: Camera

\[\begin{array}{c}
\text{x,y,z fixed} \\
\text{Ray Space}
\end{array} \]

Ray Space

Omnidirectional Image
The Set of All Rays incident at a point \((x,y,z) \)
- Spherical Light Field \(= \) 360 degrees

Representation of Choice
Capturing Point Light Fields

- Omnidirectional Cameras
 - Catadioptric
 - Dioptric
 - Multi-Camera

Catadioptric Cameras

- Mirror-Based (parabolic or hyperbolic)

Dioptric Cameras

- Fish Eye Lenses

Multi-Camera Systems

- Point Grey’s Ladybug (6 Perspective Cameras)

Panoramic Surfaces

Generalized Support for Visual Information

- Data Representation
 - example: Cylindrical Panorama

Parametrizations

Maps 2D Surface to Planar Domain

- Coordinate Systems
 - example: Cylindrical Mapping
360° Image Formats

Omnidirectional Panoramas

- Parametrizations of the Sphere
 - Lat-Long
 - Cube Map
 - Azimuthal
 - Stereographic (*)

Equirectangular Projection

- Latitude-Longitude Mapping (e.g., Flickr)

Cube Mapping

- 6 Perspective Projections
 suitable for CG rendering

Azimuthal Projection

- Hemispherical Mapping

Applications to 360 Cinema

Exhibition

- Viewing Scenarios
Field of View
- Reference to Observer
 - 30 to 90 degrees

Film Language
- Conventional Cinema
 - HD Television
 - Theater Panavision
- 360 Degrees Dome
 - Omnimax
 - Dome Master

Conventional Cinema
- Camera Moves
 - Track Pan / Tilt Zoom

360 Camera
- Camera Moves
 - Track
 - Pan / Tilt
 - Zoom
 - yes, maybe, ?

Authoring Issues
- OBS: Post-Production
- Passive
 - Movies
- Interactive
 - Google Street View
- Immersive
 - AR Cinema

360° Image Transforms
- Moebius Transformations for Manipulation and Visualization of Spherical Panoramas
- Current Research at VISGRAF Lab
- Collaboration with
 - Leonardo Koller Sacht
 - Luis Penaranda
Math of Camera Moves
- Omnidirectional Images and Möbius Transformations
 - Pan / Tilt ⇔ Elliptic Transform
 - Zoom ⇔ Hyperbolic Transform
 - Perspective ⇔ Parabolic Transform

Transformation Pipeline
- Möbius Mapping

Example
- Extreme Zoom

Comparison
- Alternative Projections

Current Work
- Preserving Lines
- Perspective Control
Questions?

Improving Projections of Panoramic Images with Hyperbolic Möbius Transformations

L. Peñaranda L. Sacht L. Velho

IMPA