A system’s architecture for Warping and Morphing of Graphical Objects

Jonas Gomes, Luiz Velho - IMPA, Rio de Janeiro
Lucia Darsa - Equator Technologies, Seattle
Bruno Costa - Microsoft Corporation, Seattle

Our Goal

Develop a testbed system for warping and morphing of graphical objects
System Requirements

- Use different graphical objects
- Use different shared techniques
- Plug in new objects
- Plug in different techniques
- Uniform and coherent interface

Importance of the Goal

- Warping and morphing is a basic operation in graphics
 - Registration
 - Motion warping
 - Texture mapping
 - Correction of Optical distortion
 - Image stitching
 - Image based rendering and modeling

- Many applications
Current Status

- Research has covered particular classes of graphical objects
- There has been no attempt to obtain an integrated framework
- There exists no flexible system architecture
 - Different graphical objects
 - Different techniques

Need for an integrated system
Key concepts

- Graphical object
- Warping and morphing

Graphical Objects

- Drawings
- Volume data
- Images
Definition of a Graphical Object

• Shape
 \[U \subset \mathbb{R}^n \]

• Attributes
 \[f: U \subset \mathbb{R}^n \rightarrow \mathbb{R}^k \]

• Dimension of the GO

Image

\[f : U \subset \mathbb{R}^2 \rightarrow \mathcal{C} \]

• Shape is a rectangle
• Attribute is color
• Dimension = 2
Audio

- Shape is an interval
- Attribute is air pressure
- Dimension = 1

\[f : U \subset \mathbb{R} \rightarrow \mathbb{R} \]

Solid (volumetric object)

\[f : U \subset \mathbb{R}^n \rightarrow \mathbb{R} \]

- Shape is an spacial domain
- Attributes: density, ...
- Dimension = n
Curves (Drawings)

- One-dimensional graphical objects of the plane

Surfaces

- Two-dimensional graphical objects of the space
Two-Dimensional Solids

- 2D graphical objects of the plane
- Binary image
 - Shape is the focus

Animation

- Variation of a graphical object along the time

\[
\mathcal{O} = (U, f), \quad U \subset \mathbb{R}^n
\]

\[
\varphi: [a, b] \times \mathcal{O} \rightarrow \mathbb{R}^n
\]

\[
t \mapsto \varphi(t, \mathcal{O}) = \mathcal{O}_t
\]
Warping and Morphing

- Transformation of GO
 - Transforming shape
 - Transforming attributes

Transforming Shape

- transformation of the image shape
Transforming Attributes

- Texture transformation

Transforming Shape and Attributes

- An example:
 - Color, Geometry and topology
Our goal: Continuous Deformation

Continuous Deformation

• *Twist*: Rotation angle increases with height
Continuous twist

\[R(x, y, z) = \begin{pmatrix} \cos f(z) & -\sin f(z) & 0 \\ \sin f(z) & \cos f(z) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \]

- Parameter space (z axis)

Families of Transformations

Graphical Object

\[T(p, v) = \]

Parameter Space
From families to animation

Warping and Morphing

- Warping
 - Continuous family of transformations of a graphical object
- Morphing (metamorphosis)
 - Warping between two graphical objects
Warping and Morphing

- **Warping**
 - Source object
 - No target object
- **Morphing**
 - Source object
 - Target object

\[
\text{morphing} = (\text{warping})^2 + \text{blending}.\]
Attribute Blending

Shape Warp + Attribute Blending
Computing Graphical Objects

- Description
- Representation
- Reconstruction

Computing transformations

- Specify transformations
- Represent transformations
- Reconstruct transformations
A Warping and Morphing System

- System components
System components

• Support level
 • input and output of graphical objects
 • file formats
 • commonly used classes
 • vectors, lists, matrices

• Platform Level
 • User interface
 • Platform-dependent resources

• Kernel level

The Kernel Level
Graphical Objects

- Hierarchy of abstract data types

Specification
Specification

- Hierarchy of Manipulators
 - Basic
 - Composite
Composite manipulators

- Instantiation hierarchy

\[\text{morphing} = (\text{warping})^2 + \text{blending}. \]
Computation

• Warping and Morphing engine

<table>
<thead>
<tr>
<th>Object Traversal</th>
<th>Warping Reconstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse mapping</td>
<td>Field-based</td>
</tr>
<tr>
<td>Direct mapping</td>
<td>Radial functions</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute Combination</th>
<th>Shape Combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-dissolve</td>
<td>Exponential blend</td>
</tr>
<tr>
<td>z-buffering</td>
<td>Linear interpolation</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Computation

• Animation schedulers
 • slow-in, slow-out
The *Morphos* System

- Windows / C++ / OpenGL
- Side by side user interface
- Figure 13
- How to get it
 - Book & CD-ROM
 - *Warping and Morphing of Graphical Objects*
 - Morgan kaufmann Publishers, 1998
- The morphing site

Future additions to Morphos

- Addition of volumetric objects
- Addition of surface warping
- Addition of surface morphing
- Single window interface (displacement vector)
- Automatic feature detection
- Temporal warping (video sequence)
- Port the system to UNIX