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Abstract

We describe a predictive memory management system that allows the visualization of 2D graphic

objects in real time. This system is based on a virtual memory model. We show how the page

loading system predicts and fetches data before it is accessed by the application and how the page

replacement system decides which data should be removed from memory. We demonstrate the

e�ectiveness of the system for real-time visualization of large panoramas.
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1 Introduction

Two-dimensional data is widely used in computer

graphics. Applications are developed to allow real

time rendering of 2D data, for example, visualiza-

tion of virtual panoramas, images and terrain.

In order to be interactive, those applications

should maintain a minimum and constant frame

rate. The diÆculty of accomplishing this task is

related with the amount of data that one wants

to visualize. This happens basically due to two

factors:

� In the visualization process it is necessary

that data is loaded in high-speed memories.

In general, these memories have small stor-

age capacity (see the Figure 1).

� To visualize an object it is necessary to

perform geometric and illumination calcu-

lations. Those calculations are, in general,

very complex.

To solve the �rst problem, memory management

techniques are used. These techniques exploit in-
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Figure 1: Memory levels: the relationship

between storage capacity and bandwidth.

formation about the characteristics of graphic ob-

jects to determine the data that is kept in memory

at a given time.

The second problem mentioned above, where is

necessary to reduce the amount of processing, can

be solved through multi-resolution techniques.

The objective of this work is to develop a memory

management system based on the virtual mem-

ory paradigm to visualize 2D objects that possess

large amount of data. The data is represented

as a multi-resolution structure. The system uses



predictive loading based on spatial and temporal

coherence. In addition, the system also takes into

account that the objects are represented in multi-

resolution and each resolution level is subdivided

in a regular form. That subdivision will allow

loading each subset of the data when necessary.

2 Previous Approaches

One of the �rst visualization systems that used

textures in multi-resolution was described in

[Willi83]. That system introduced a data struc-

ture called mipmap to represent a texture in

multi-resolution.

The visualization system presented in [Chist98],

uses a representation called clipmap. The

clipmap is based on the mipmap, but allows large

resolution textures to be visualized in real time.

The clipmap employs a system that determines

which area of the mipmap should be loaded to

texture memory. The main disadvantage of this

approach is that it needs a special video card

hardware that supports clipmap.

In [Matos98b] a visualization system for virtual

panoramas is presented. In that system, the

panoramic image is represented at a single res-

olution level. The memory management mecha-

nism used in this system is based on the paging

technique to transfer data among several storage

levels.

The system described in [Matos98a], employs

panoramic images in multi-resolution. In this

work, the memory management system developed

in [Matos98b] is adapted to manage panoramic

images in multi-resolution. The management sys-

tem only allows visualization of tiles that are at

the same resolution level.

Our work proposes a system for visualization of

2D graphic objects in real time. That system is

implemented using o�-the shelf hardware. The

main requirement is a graphics card with texture

capability.

The visualization system is integrated with a

memory management system that manages sev-

eral storage devices during rendering. The mem-

ory management suports 2D graphic objects with

large textures. The system adapts rendering ac-

cording to the amount of available memory in the

storage devices. That adaptation is based on the

multi-resolution structure of the 2D graphic ob-

ject.

The memory management system can be used in

several types of visualization applications, for ex-

ample, visualization of images, terrain data and

virtual panoramas. The system is designed such

that communication and data transfer among

storage levels are independent of the graphic ob-

ject type.

3 2D Graphics Object

There are di�erent representations for graphics

objects (see [Gomes98]). This work combines two

techniques: decomposition and multi-resolution.

In the representation process, the graphics object

is decomposed in partitions represented at several

resolution levels.

The geometric support U =
S

� U� of the object

is decomposed, such that the sets Ui are disjoint.

It is also necessary to obtain the attribute fi;j for

each element Ui;j . The attribute function f is a

texture. The function fi;j is de�ned naturally as

fi;j = f j Ui;j . Here each O(Ui;j ; fi;j) is called

a tile. Observe that the attribute function fi;j
associates a subset of texture to the geometric

support Ui;j . This subset can be represented by

a subimage, which is a partition of the image that

represents the whole texture. In this way, a tile

Ti;j is de�ned as Ti;j = (Ui;j ; Ii;j), where Ui;j rep-

resents geometric information and Ii;j represents

texture information.

I2i,2j,k+1 I2i,2j+1,k+1

I2i+1,2j,k+1 I2i+1,2j+1,k+1
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i,j,kI
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Figure 2: Construction method of the

multi-resolution structure.

The graphic object is represented by a matrix of

tiles. This matrix of tiles is than converted to

multi-resolution. To facilitate the construction

of the multi-resolution structure we assume that

the dimensions of the matrix are (2n�2m). Each

tile is identi�ed as Ti;j;k, where (i; j) represents



the position in the matrix and k is the resolu-

tion level. A tile Ti;j;k is de�ned as union of the

tiles Ti;j;k+1, Ti+1;j;k+1, Ti;j+1;k+1, Ti+1;j+1;k+1
(see Figure 2). Figure 3(a) shows the multi-

resolution structure. Observe that each level

k� t is represented by a tile matrix of dimensions

(2n�t � 2m�t).

In order to reduce the space occupied by the

multi-resolution structure, only tiles that increase

visual information will possess textures associ-

ated with them (see Figure 2). After the sim-

pli�cation process, the multi-resolution structure

is shown in Figure 3(b). This representation

method is called adaptive multi-resolution.

Level 0

Level 1

Level 2

(a) (b)

Figure 3: (a)Normal multi-resolution

method. (b)Adaptive multi-resolution

method.

Table 1 compares the amount of space necessary

to store the representation using normal multi-

resolution and adative multi-resolution. Observe

that the sizes of the textures decrease when rep-

resented using the second method. That happens

because the adaptive multi-resolution works as a

lossy compression.

Size Levels Normal Adaptive

384MB 7 512MB 66.2MB

192MB 6 256MB 63MB

48MB 5 63.9MB 28.5MB

12MB 4 15.9MB 6.93MB

Table 1: Space necessary to store multi-

resolution representation.

Each tile is described by a structure that con-

tains four �elds: geometric information, texture

information, children tiles, father tile. The multi-

resolution data structure is a one-dimensional

vector, where each element of this vector contains

a two-dimensional vector that represents the ma-

trix of tiles at one resolution (see Figure 4). Ob-

serve that the lowest resolution level is a forest of

quad-trees. Thus, the data structure allows a tile

to be located throught the index of the quad-tree

structure.
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Figure 4: Multi-resolution data strutcture.

4 Memory Management

The memory management system for the visu-

alization of graphic objects was inspired in the

virtual memory model [Tanen87][Silbe00]. This

model was modi�ed to adapt to visualization

problems.

The �rst modi�cation extends the virtual mem-

ory model to manage other types of memory de-

vices. This was made through a generalization of

the concept of primary and secondary memory.

In the visualization system, a primary memory is

a storage device type that has faster transfer rate

and smaller storage capacity than the storage de-

vice with which is exchanging information. The

slowest device with larger storage capacity is con-

sidered as the secondary memory. Figure 5 shows

the relationship among storage devices.
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Figure 5: The hierarchy of the storage de-

vices (the concept of primary and secondary

device).

The virtual memory system is illustrated in Fig-

ure 7. In that system, each storage level possesses

a page table used with the same objective that in

the conventional virtual memory system, that is,



to store the mappings between logical addresses

to physical addresses and the state of the map-

pings. The last storage level doesn't possess a

page table because this level is capable of stor-

ing all the data. The physical memory is divided

into blocks of same size and the logical memory

is divided into pages with the same size of these

blocks.

The block size, and consequently the page size,

depends on the representation of the graphic ob-

ject. As was discussed in the Section 3, the

graphic object is represented by tiles, where each

tile is de�ned as Ti;j;k = (Ui;j;k; Ii;j;k). Thus,

the size of each memory block is enough to store

four images. The decision of maintaining four

textures in each block comes from the fact that

in the multi-resolution structure, a tile possesses

four children. Each tile Ti;j;k is represented by

a logical address of 4 bytes, expressed in the fol-

lowing way: 2 bits to represent the position of the

texture in the page, 22 bits to identify the page,

and 8 bits to identify the 2D graphic object. Fig-

ure 6 shows a logical address.

2bits22bits8bits

PositionPageObject

Figure 6: A logical address identi�es a tile

of the 2D graphic object.

The real time visualization system must use a

paging mechanism capable to load pages of tex-

tures before they are accessed by the application.

This mechanism is called predictive paging. When

a memory management system uses predictive

paging, this system is called predictive manage-

ment system.

In a predictive system, page loading and page re-

placement algoritms are more complex, because

they take into account the nature of data and

how the data is accessed by the graphic object.

Figure 7 shows the predictive paging mechanism.

Observe that in the predictive system is only nec-

essary to have a single page loading module that

operates at the highest storage level. When the

system makes a request to load a page, this re-

quest is passed through several storage levels, in

cascade, until the requested page is found. Once

the page has been found, it is fetched until be-

coming accessible at the wanted level. The page

replacement system, however, is speci�c to each

storage level. This is because page replacement

depends exclusively on the capacity of the storage
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Figure 7: The predictive paging mechanism

structure.

device. Thus, for each storage level it is possible

to develop a diferent page replacement policy.

The predictive system is implemented as a layer

above the operating system. In this work the pre-

dictive system was implemented only for texture

management. Thus, the virtual address associ-

ated to each tile is used just to access its texture.

The texture access operations are supplied by the

predictive system while the geometry access oper-

ations are supplied by the operating system. Fig-

ure 8 shows how application communicates with

these two memory systems to visualize graphics

objects.

I/O System

Geometric access

Memory Device

Visualization System

Application

Visualization

Memory Maneger
Predictive

Paging

On demand

Paging

Operating System

Memory Manager

Texture access

Informations

Figure 8: Organization of the memory man-

agement system for the visualization of 2D

graphic objecs.

The memory size of each storage level is de�ned at

system initialization. The predictive system allo-

cates storage areas and divides them into blocks.

The block size depends on the texture size of the

tiles.

During rendering, the visualization system ac-
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Figure 9: Construction of the logical ad-

dress space of a 2D graphic object.

cesses the tiles to build a scene. Figure 9 shows

how the logical address space of a graphic object

is formed.

The memory management system transforms vir-

tual addresses, accessed by the visualization sys-

tem, in real memory addresses where textures are

stored. The predictive paging system will always

guarantee that when a virtual address is accessed,

it is already mapped to a real address. For that,

the predictive paging system will exploit the data

structure of the graphic object. Figure 10 shows

how the visualization system exchanges informa-

tion with the management system.
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Figure 10: Communication among the vi-

sualization and the memory management

systems during rendering. This �gure il-

lustrates three storage levels.

4.1 Page Loading and Page Replacement

In the visualization process, the virtual camera

determines what is shown. Thus, pages are ac-

cessed based on the virtual camera.

Mathematically, the problem of predicting cam-

era parameters, can be expressed in the fol-

lowing way: Let (ti)i2Z be an uniform se-

quence of instants of time (t0; t1; t2; :::; tn), where

ti 2 R
+ , and (pi)i2Z a sequence of parameters

(p0; p1; p2; :::; pn), where pi 2 R
n , and a mapping

function f de�ned as f(ti) = pi, where 0 � i � n.

Then, we want to �nd the value of the function f

at the instant tn+k based on previous values (tn),

where k > 0.

The page loading system solves this problem us-

ing the equations that describe the camera move-

ment. That prediction is accomplished through

the following steps:

1. Compute the velocities

vn�1 =
pn�2 � pn�1

tn�2 � tn�1
; vn =

pn � pn�1

tn�1 � tn

and acceleration

an =
vn � vn�1

tn � tn�1

.

2. The function f is de�ned as

f(tn+k) = pn + vntn+k +
ant

2
n+k

2
= pn+k

, where k > 0.

The page loading policy was implemented based

on the following rules:

L1. In order to visualize a graphic object it is

necessary that the texture of the lower res-

olution level is loaded. Thus, it is assumed

that the storage device should be capable to

store at least the lowest resolution level of

the texture. Figure 11 illustrates this rule.

Level 0

Level 1

Rule 1

Figure 11: Rule L1: The lowest resolution

level should be loaded in the memory.

L2. If a tile is loaded, then its siblings should

also be loaded. This rule is derived natu-

rally because a page stores the textures of

the tiles that have a common ancestor. This

rule is shown in Figure 12.



Level 1

Level 0

Rule 2

Load

Texture

Figure 12: Rule L2: If a tile is loaded, then

its siblings tiles should also be loaded.

L3. If the texture of a tile that is at level k is

loaded, then the textures of the ancestrals

of this tile should also be loaded. The Fig-

ure 13 illustrates this rule.

Load

Texture

Level 0

Level 1

Level 2

Rule 3

Figure 13: Rule L3: If the tile is loaded,

then its ancestrals should be loaded.

When a graphic object is visualized, the page

loading system, initially, executes four tasks:

1. Load the lowest resolution level of the

graphic object (rule L1).

2. Calculate the intersection of the view frus-

tum with the geometric support of the

graphic object to determine the area that

is being visualized. This area determines

which tiles are being rendered.

3. Determine the best resolution level that

each tile should be visualized. This level is

determined based on the projected texture

resolution.

4. The pages that contain tiles at the chosen

resolution are loaded in the texture mem-

ory, obeying the rules L2 and L3. Thus,

when the rendering system draws, these

textures are already in the texture memory.

During the visualization process, the rendering

system sends the camera parameters to the mem-

ory system. Using these parameters, the page

loading system predictes the values of the camera

parameters for the next k frames. After the pre-

diction phase, the page loading system executes

the tasks 2, 3 and 4, for each frame.

In spite of the page loading system e�ort to load

the pages before they are accessed, page pre-

fetching may fail in some cases. This happens

due to three reasons:

� The time can be so small that the page load-

ing system can't �nish its tasks.

� When the camera moves too fast, it is pos-

sible that the system makes a less accurate

prediction.

� There is not enough space to store the nec-

essary pages for future frames.

The page loading system cannot interrupt the vi-

sualization process to load an unmapped page.

This problem is solved exploiting the multi-

resolution structure of the graphic object. When

an access to an unmapped page happens, the page

loading system executes the following task:

� Given that the unmapped page contains the

texture of a tile, the page loading system

searches the multi-resolution tree to �nd an

ancestral tile that has a loaded texture. Due

to rule L1, that ancestral can always be

found, because all tiles of the lowest reso-

lution level are loaded at initialization. Af-

ter having found the ancestral tile, the at-

tribute function of the requested tile is mod-

i�ed. Figure 14 shows this task.
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Figure 14: Procedure executed by the page

loading system when happens a page fault.

When the page loading system can't load a page

due to lack of memory, the page replacement

mechanism is activated. Thus, the memory man-

agement system calls the page replacement sys-

tem to decide which page should be removed from

memory.

The page replacement system decides to remove

a page considering the current state of the cam-

era (position, speed and acceleration). Using this

information, it is possible to know which pages in



memory are likely to be accessed by the visual-

ization system. Among the candidate pages, the

page to be removed is the one at highest resolu-

tion level.

After de�ning the criterion to remove a page, it is

necessary also to establish rules with the objective

of maintaining consistency between loading and

replacement operations. The replacement process

is executed obeying the following rules:

R1. Pages that contain textures of the lowest

resolution cannot be liberated. This rule

avoids inconsistency during the execution of

the rule L1 when page fault occurs.

R2. The tile is only liberated after its four chil-

dren are liberated, Figure 15 illustrates the

result of this rule. This rule also avoids in-

consistency during the execution of the rule

L1 when page fault occurs.

Liberate

Texture

Level 0

Level 1

Level 2

Liberation

Rule 2

Figure 15: Rule R2: The tile is only re-

moved after its four children are removed.

R3. Pages that contain textures of the current

frame cannot be liberated.

Given that the visualization system is con�gured

to draw q frames per second and that the time

spent to render a frame is Tq, where Tq < 1

q
,

then the memory management system has time

Tc =
1

q
�Tq to accomplish the tasks of prediction,

page loading and page replacement.

5 Application

The memory management system has been tested

in a visualization system for virtual panoramas.

Figure 16 shows a panoramic image that rep-

resents a cylindrical panorama. There are sev-

eral techniques to create panoramic images (see

[Matos98a]).

Initially, to visualize the graphic object the mem-

ory management system executes two steps:

1. Load geometric information to main mem-

ory. Here, it is assumed that the main mem-

ory has the capacity to store all geometric

information.

2. Load the necessary textures for the visual-

ization of the current view window. This is

accomplished as discussed in the previous

section.

Figure 16: Virtual panorama visualization.

During the rendering process, the page loading

and page replacement systems monitor variations

of camera parameters (pan, tilt and zoom angles)

to predict which tiles should be loaded and which

should be liberated. Figure 17 shows the virtual

panorama and the texture memory map that indi-

cates which textures are loaded, the current view

window and the future views calculated by the

prediction system.

Panorama

Memory Map Current View Future Views

Figure 17: Virtual panorama visualization

and the texture memory map.

6 Results

The performance tests of the memory manage-

ment system were realized on a Pentium III-850



MHz, 786 MB of RAM memory, 40GB SCSI disks

with transfer rate of 80Mb/s and Oxygen GVX-

420 graphics card. These tests took into consid-

eration the following criteria:

� The size of the panoramic image and the

number of resolution levels.

� The amount of RAM and texture memory

used during the visualization process.

� The screen resolution has 640� 480 pixels.

� The texture of each tile has 64� 64 pixels.

In the tests, we used 16MB of texture memory,

128MB of RAM memory and the system was con-

�gured to guarantee a frame rate of 30 fps.

Three textures were chosen with the objective of

obtaining three di�erent situations. The �rst tex-

ture has 15.9MB and it can be stored completely

in both storage devices. The second texture has

48MB and it can be stored completely in the

RAM memory, but not in the texture memory

and the third texture has 256MB, it cannot be

stored completely in neither of the two storage

devices.

The application that used only the operating sys-

tem didn't have any problem to visualize the

panorama of 15.9MB. However, during the visu-

alization of the other two panoramas the applica-

tion didn't reach the minimum rate of 15 frames

per second and in some situations the visualiza-

tion process was stopped for some seconds.

The performance loss was due to two factors.

First, the operating system doesn't take into ac-

count the nature of the graphic object. Thus, it

is unable to exploit coherence of the representa-

tion. Second, the operating system uses on de-

mand paging mechanism. In this system the ex-

ecution is interrupted whenever a page fault oc-

curs.

On the other hand, when the application used the

predictive system, a frame rate of 30 fps was eas-

ily achieved for the three textures. This happens

because the memory management system exploits

temporal and spatial coherence during the visual-

ization process. Using that strategy it is possible

to develop a paging system that can predict which

data will be used in the future. Also, if a tile can-

not be loaded on time, the management system

searches a texture of lower resolution and gives it

to the visualization system. In this way, the exe-

cution of the application is never interrupted.

7 Future Works

Various improvements can be done in the memory

management system presented in this work. We

can mention the following ones:

� Extend the management system to work

with geometric data. This implementation

will eliminate the limitation that geometric

information should �t in main memory.

� Make possible to manage animated tex-

tures. This will allow visualization of di-

namic environments.

� Extend the system to do memory manage-

ment during the construction of the graphic

object. Thus, large panoramic images can

be processed without the need for large stor-

age resources.

� Modify the loading and replacement sys-

tems to allow terrain data real time visu-

alization.

� Incorporate the storage network level. This

will allow the graphic objects to be stored

in server machines that are connected with

the client machine runnig the visualization

application.
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