
Exemplar-based Terrain Synthesis
Leandro Cruz, Francisco Ganacim, Djalma Lucio, Luiz Velho, Luiz Henrique de Figueiredo

VISGRAF Lab - Instituto de Matematica Pura e Aplicada - IMPA
Rio de Janeiro, Brazil

Fig. 1. Given a small exemplar of a terrain, with height data (left) and texture (middle), we synthesize a new terrain (right) adapting texture synthesis
methods.

Abstract—The first terrain modeling techniques were intro-
duced in the late 70’s and in early 80’s. They used procedural
methods based on fractals to generate geometry. These models are
good enough for some applications, but are not geomorphologi-
cally correct. Later, some works introduced methods that create
terrains simulating physical process and using real data.

In this work we discuss a method to generate terrains based on
real samples of digital elevation models. The synthesis process
is an adaptation of modern texture synthesis algorithms. Our
method goes toward creating non-homogeneous terrains using
some controllable features.

Keywords-Terrain synthesis, exemplar-based approach, real
data

I. INTRODUCTION

A common representation of the macro structure of a terrain
consists of a Digital Elevation Model (DEM) and of a texture.
To represent a more complex model, with more geometric
details such as overhangs, vertical forms or loose rocks, it is
necessary to use a more general representation [1], [2].

Another representation choice refers to the topology of the
model. We can represent a terrain with the topology of a
sphere (like a planet) or with the topology of a disk (like a flat
landscape). To represent a planet (a model with the topology
of a sphere) we need to decompose it in an atlas (a set of
charts), ensuring that the transitions between glued charts are
continuous (and smooth, depending on the case).

Since DEMs are basically matrices of heights, there is a
seemingly trivial association between this representation and
a gray-scale images. With this motivation, in this work, we
aim to adapt texture synthesis methods to generate macro
structure of terrain models. Hence, the DEM representation
is suitable for our purposes. Furthermore, to avoid handling
chart transitions we opt to create only “flat” terrains.

A. Related work

The first methods used to create artificial terrains were
based on procedural approaches. The original method, in-
troduced by Mandelbrot [3], [4], uses fractals to generate
height fields. Later some procedural techniques based on
noise were proposed [5], [6], [7].The main goal of these
techniques is to create models that are perceptually good; they
do not aim to create a geomorphologically correct model.
More recently, new techniques were introduced that rely on
simulating physical phenomena [8] or exploiting real data [9],
[10] to guide the creation of new landscapes. This latter trend
is the one we explore in this research.

Zhou et al. [10] exploit pieces of real datasets to create new
terrain models. They use geometric information related to the
geometry of ridges and valleys of the landforms to create new
terrains with the same features of the input exemplar. They
show that the results can be improved when considering the
geometric features of the input terrains.

To generate micro structure one could use procedural meth-
ods such as described by Ebert et al. [11] or Peytavie et al.
[2]. The former shows many methods based on fractals and
noise. The latter uses implicit functions to models landform
features, such as loose rocks, overhangs, and caves.

Wei and Levoy [12] introduced a technique to synthesize
a texture, in a multiresolution way, matching neighborhoods.
Lefebvre and Hoppe [13] introduced a technique to create
textures using neighborhood matching. It is a parallel and
controllable technique to texture synthesis that can be used
to create terrain models (as the authors show in one example
of the paper). Their approach was extended by Han et al.
[14] to use more than one input exemplar and to allow
multiscale, improving the ability to generate heterogeneous



Fig. 2. Pipeline of our method

results. Their method is based on a graph of similarity between
the exemplars (specified by the user). However, it is not clear
how to choose good exemplars and how to define the similarity
graph.

One of the main differences between the approach by Wei
and Levoy [12] and the one by Lefebvre and Hoppe [13] is
the multiresolution representation of the input sample. Wei
and Levoy create a Gaussian pyramid of the sample, while
Lefebvre and Hoppe create a Gaussian stack. The second
case is more general than the first, because it contains all
possibilities of pyramids. Accordingly, the results obtained
using the stack are better than the ones obtained with the
pyramid.

Han et al. [14] extended the previous approach by including
the super exemplar concept. It is a graph with samples and
their relations, which enables us to create an heterogeneous
model with features in several resolutions.

II. THE TERRAIN SYNTHESIS METHOD

Figure 2 shows the pipeline of our method. We begin by
specifying the input data: the set of samples (RGB+DEM), the
graph (which could be empty), the jittering scale to be applied
in each level, and the guide. The input is then processed to
create auxiliary data structures, such as the Gaussian stacks
[13]. Finally, we perform the synthesis by creating the output
from the coarsest resolution to the finest.

The synthesis pass that we employ was first introduced by
Wei and Levoy [12]. In that work they synthesize a texture in
multiresolution. They begin by initializing the coarsest level
with random colors collected from the input exemplar. For
each new resolution level, the method applies upsampling
followed by a correction phase.

The correction step consists on finding in the input exem-
plar, neighborhoods of pixels that are the closest, by some
given metric, to the neighborhood of the pixel in the texture
level being synthesized. This choice may not be unique, since
many neighborhoods in the input can share the same distance
to the texture neighborhood being corrected. In this case, we
can choose randomly or base our decision on some other
criterion. Besides that, we can choose not only from the
set of closest neighborhoods, but from a slight larger set
of the closer neighborhoods. This change introduces more
variability and can give interesting results in some cases. Both
nearest neighbor and approximate nearest neighbor can be

implemented using a kd-tree, reducing the overall algorithm
cost.

Our multiresolution representation of the exemplar is the
Gaussian stack [13]. If the input is a square patch with side
2L then the stack has L + 1 levels. The finest level (l = L)
equals to the input, and the coarsest level (l = 0) contains only
a constant value. All intermediary levels are representations of
the input at different resolutions or levels of detail. Generally
speaking, level l has half the amount of frequency information
than level l + 1, that is, level l is level l + 1 convolved with
a low-pass filter. Figure 4 shows an example of an exemplar
stack.

The core of the method, according to Lefebvre and Hoppe
[13], consists in the following three steps: (1) upsample the
texture level; (2) jittering the coordinates, and (3) correct the
pixels. The correction step may be performed more than once.
This is not a convergent process. Because of this, it is not clear
how many times it should be repeated for optimal results.
For the generated examples shown in this paper, we have
performed two correction steps.

A. Neighborhoods

The neighborhood is a k × k window around of the pixel.
We choose k odd in order to have the evaluated pixel at the
center of the window.

The neighborhood matching is made using an Euclidean
norm in vectors of dimension k×k×d, where d is the number
of channels of the data. This is a naive norm, since it does
not take in account the specific domain of the problem. One

Fig. 4. The Gaussian stack of an input exemplar of size 128×128, with 8
levels.



Fig. 3. Guide: (left) exemplar, (middle) sktech-based guide, and (right) gluing approach.

objective of this research is to find a better metric to match
neighborhoods and to evaluate the quality of the results.

Once the neighborhood size is defined, we can improve
the matching performance reducing the dimensionality of the
neighborhoods with Principal Components Analysis [13]. We
select the eigenvectors that represent the directions containing
at least 95% of the energy of the input.

To the best of our knowledge, in all texture synthesis
works the window size is an arbitrary parameter. If this
parameter is small, the neighborhoods do not capture structural
informations of the exemplar, and the matching is inefficient.
If it is too large, the matching process is too expensive, and
the result can not show a desired variability. We calculate the
optimal size of the window as the one that minimizes the ratio
between the PCA dimension and the neighborhood dimension
(k×k×d). So far, all generated terrains have used exemplars
of size 128× 128 or 256× 256. In these cases, we found for
the optimal window size with k ∈ {3, 5, 7, 9}.

In many examples of texture synthesis works, the authors
use toroidal exemplars to avoid the creation of spurious
artifacts. These artifacts are created due to discontinuity on the
borders of the exemplar. However, this is not an alternative for
terrain synthesis, because the type of exemplars we use do not

Fig. 5. Synthesized Terrain.

have this characteristic. To aleviate this problem, we use, in
the same spirit as Lefebvre and Hoppe [13], larger exemplars,
employing only the data inside a predefined safety margin.

We have created some terrains using the presented approach.
Figure 5 shows one of the results. The first line shows the
exemplars and the generated result. The second line shows the
rendering of a piece of this terrain. On left we are showing
only geometry and in right a complete rendering.

B. Guided synthesis

To obtain more control of the terrain creation we are
proposing to introduce a guide to the synthesis process. We
represent the guide the same way we represent a terrain model,
using a DEM. Furthermore, it is important to ensure that the
guide’s scale is the same of the terrain.

In the processing stage, the guide is decomposed in a mul-
tiresolution pyramid (Laplacian pyramid). For each level of the
synthesis we add the respective resolution information from
the Laplacian pyramid. Following, we apply the correction.
This way we maintain the multiresolution approach, but we
introduce a new step in the synthesis pipeline. This process
offer a control of the synthesized result, ensuring that the
macro structure of the guide will appear in the synthesized
terrain.

The guide building is a sensitive process, because it must
contain the structures existent into the exemplars. If the guide
features are too different, the correction stage will create
spurious structures.

Currently, we are building a guide in two different ways:
(1) a sketch-based approach, and (2) gluing features of the
exemplar. In the former we sketch the landforms structures
(using a brushing approach). It is important to identify some
features of the brush, to ensure that the guide will only have
features of the exemplar. In the latter, we create a guide gluing
patches of the exemplar, possibly warping them to fit the
desired output. Figure 3 shows some results created with both
approaches. We are still investigating the best way of building
and using guides in the synthesis process.

The neighborhood representation is invariant to translations.
In order to successfully execute the guided synthesis we need
to be able to create neighborhoods that do not exist in the
input, unless we apply some sort of transformation, such
as rotations, on the input. For that reason, the translation
invariance is not general enough for the matching process.



Fig. 6. Terrain created with a graph self similatity graph.

To simulate a representation that is invariant to rotation,
we have added rotated versions of the exemplars (we use 4
rotated versions). It has aggregated more informations for the
correction step, and improved the quality of the results. This is
not a solution. We still do not have an invariant representation
to rotations. In the following stages of this research, we intend
to search for better representations.

III. FUTURE WORK

One of the challenges of this work is to create ways to
control the synthesis. The input data allows us to define
desirable features, and the graph allows us to describe scale
relations between the input exemplars. However, it is not
possible to control the features positions and sizes. To improve
the control we are using the guide to add macro structure to
the initial texture.

However, the guide creation is a task that must improved.
We have proposed two approaches to guide building. Both
of these approaches are a proof of concept that indicates
promising directions. We intend to follow investigating on how
to build the guide keeping a good trade of between control and
simplicity.

Another possibility is to create a map with the probability
of samples that should be prioritized in certain regions. It
could take advantage of the multiple choices in matching of
neighborhoods.

Another problem is how to find exemplars with appropriated
structure. In general, the exemplars have only parts of some
landform in some resolution. We intend to improve our exem-
plars using summarization techniques [15] to create exemplars
that contain more structure.

Finally, we intend to use the multiscale synthesis introduced
by Han et al. [14]. Another improvement of our method
consists in automatically creating the graph. The relations
definition between the exemplars is not a trivial task. Figure
7 shows an example of a graph manually created. To the best
of our knowledge, no work addresses the creation of the input
graph. So far, we have only tested using graphs with only

Fig. 7. Input graph.

one exemplar with a self similarity. This example is shown in
Figure 6. The top-right figure shows the exemplar. The right
figure shows the mesh with the result terrain.

ACKNOWLEDGMENT

The first and second authors are supported by CNPq. The
fourth and fifth authors a partially suported by CNPq. This
work was done in the Visgraf laboratory at IMPA, which is
sponsored by CNPq, FAPERJ, FINEP and IBM Brasil.

REFERENCES

[1] M. N. Gamito and F. K. Musgrave, “Procedural landscapes with over-
hangs.” In Proceedings of 10th Portuguese Computer Graphics Meeting,
2001.

[2] J. G. S. M. A. Peytavie, E. Galin, “Arches: a framework for modeling
complex terrains.” Computer Graphics Forum (Proceedings of Euro-
graphics), 2009.

[3] B. B. Mandelbrot, “Stochastic models for the earth’s relief, the shape
and the fractal dimension of the coastlines, and the number-area rule for
islands.” In Proceedings of the National Academy of Sciences (USA),
1975.

[4] ——, The Fractal Geometry of Nature. Freeman and Co, 1983.
[5] A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering of

stochastic models.” Communications of the ACM, 1982.
[6] K. Perlin, “An image synthesiser.” ACM SIGGRAPH, 1985.
[7] G. S. P. Miller, “The definition and rendering of terrain maps.” ACM

SIGGRAPH, 1986.
[8] H. Hnaidi, E. Gurin, S. Akkouche, A. Peytavie, and E. Galin, “Feature

based terrain generation using diffusion equation.” In Proceedings of
Pacific Graphic, 2010.

[9] F. Belhadj, “Terrain modeling: a constrained fractal model.” AFRI-
GRAPH, 2007.

[10] H. Zhou, J. Sun, G. Turk, and J. M. Rehg, “Terrain synthesis from digital
elevation models.” IEEE Transactions on Visualization and Computer
Graphics, 2007.

[11] D. Ebert, F. K. Musgrave, D. Peachey, K. Perlyn, and S. Worley,
Texturing and Modeling: A procedural approach. Academic Press,
1998.

[12] L.-Y. Wei and M. Levoy, “Order-independent texture synthesis,” 2003,
stanford Technical Report.

[13] S. Lefebvre and H. Hoppe, “Parallel controllable texture synthesis.”
ACM SIGGRAPH, 2005.

[14] R. R. C. Han, E. Risser and E. Grinspun, “Multiscale texture synthesis.”
ACM SIGGRAPH, 2008.

[15] L.-Y. Wei, J. Han, K. Zhou, H. Bao, B. Guo, and H.-Y. Shum, “Inverse
texture synthesiss.” ACM SIGGRAPH, 2008.


	Introduction
	Related work

	The Terrain Synthesis Method
	Neighborhoods
	Guided synthesis

	Future Work
	References

