A Virtual Memory System for Real-Time Visualization of Multi-Resolution 2D Objects

Sergio Pinheiro
Luiz Velho

Problem

• Real-Time visualization of 2D objects defined by large data-sets.
• Difficulties
 – High-speed memories have small storage capacity.
 – Short time interval to perform rendering process.

Motivation

• 2D objects are widely used in computer graphics applications.

Satellite Image Virtual Panorama Terrain Data

A Solution

• Memory management system
 – Virtual memory model.
 – On-demand paging mechanism.
 – Predictive Caching.

✓ Requirements
 • Facilities to add and to remove storage levels.
 • Application-independent.

➢ Based on Multi-resolution representation

Multi-Resolution Representation

➢ Rectangular geometric support.
➢ Regular decomposition.
➢ Discrete multi-resolution representation (2^j).
Multi-Resolution
• Normal Multi-Resolution Method

Multi-Resolution
• Adaptive Multi-Resolution Method

Multi-Resolution
• Adaptive Multi-Resolution Method (Bottom-Up)

Memory Management System
• Virtual Memory System

Memory Management System
• Logical address identifies a tile
Memory Management System

- Application Communication

- Application
- Application Interface

- Visualization System
- Memory Manager

- Geometric access
- Texture access
- Information about View and Object

- I/O System
- Page Loader
- Page Unloading System
- Page Table

- Memory Device
- RAM
- Memory Maneger
- On demand Paging
- Predictive Paging

- Level 0
- Level 1

- Graphical Object
- Texture

- Information about View and Object

Memory Management System

• Predicting Problem
 - Let \((t_0, t_1, ..., t_n) \in \mathbb{R}^n\) and \((p_0, p_1, ..., p_n) \in \mathbb{R}^n\)
 - Define a mapping function \(f\) as \(f(t_i) = p_i\), where \(0 \leq i \leq n\)
 - Calculate the value of the function \(f(t_{i+1})\), where \(k > 0\)

• Predictive Mechanism
 - Calculate velocities: \(v_{n+1} \rightarrow v_n = v_{n-1} + v_{n-2} + ... + v_0\)
 - Calculate acceleration: \(a_n = a_{n-1} + a_{n-2} + ... + a_0\)
 - Define \(f\) as \(f(t_{n+k}) = p_n + v_n + a_n\), where \(k > 0\)

Memory Management System

• Page Loading Rules
 - Rule 1: Pages that contain textures of the lowest resolution cannot be liberated.
 - Rule 2: Hierarchical dependence.
 - Rule 3: Pages that contain textures of the current frame cannot be liberated.

• Page Unloading Rules
 - Rule 1: Pages that contain textures of the lowest resolution cannot be liberated.
 - Rule 2: Hierarchical dependence.
 - Rule 3: Pages that contain textures of the current frame cannot be liberated.

• Page Unloading Criterion
 - Based on resolution level and distance.
Application

- Virtual Panorama

Configuration

- **Hardware**
 - Pentium III-850
 - 768 MB of RAM
 - 40 GB SCSI – 80 MB/s
 - Oxygen GVX-420 graphics card
- **Software**
 - Windows NT
 - C++
 - Open GL

Conclusion

- The system Guarantees a frame rate of 30 fps.
- The system can be extended for other applications.
- It's easy to add others storage devices.
- It's easy to use others predictive algorithms.
- It's easy to modify the loading and replacement system.
- The system doesn't need a powerful machine.

Future Work

- Extend the management system to work with geometric data.
- Make possible to management animated texture.
- Modify the loading and replacement system to allow terrain data real-time visualization.
- Incorporate the storage network level.
- Extend the system to do memory management for others object graphic operations.