Mathematical Optimization in Graphics and Vision

Luiz Velho
Paulo Cezar Pinto Carvalho

IMPA - Instituto de Matemática Pura e Aplicada

Course Schedule

Module 1 - Computer Graphics and Optimization
Luiz Velho (1:45 minutes)

Module 2 - Continuous and Variational Optimization
Paulo Cezar Pinto Carvalho (1:45 minutes)

Module 3 - Combinatorial Optimization
Luiz Velho (1:45 minutes)

Module 4 - Global Optimization
Paulo Cezar Pinto Carvalho (1:45 minutes)

Questions we will Try to Answer

• Why optimization is important for graphics?
 – Problems and Solutions

• How optimization can be used in graphics?
 – Basic Principles

• What are the main optimization techniques?
 – Mathematical Concepts

• Where optimization has been applied?
 – Examples of Applications

Additional Material

• Website
 – Course Notes
 – Presentation Slides
 – Links
 ⇒ URL
 http://www.visgraf.impa.br/otim-03/

• Course Notes
 – Contents of Presentations
 * OBS: Probability and Optimization

Outline

• Basic Concepts
 – Graphical Objects
 – Operators

• Graphics Problems
 – Direct / Inverse
 – Well-Posed / Ill-Posed

• Optimization Methods
 – Formulating the Problem
 – Classification of Techniques

• Applications
 – Main Criteria
 – Examples in Different Areas
Motivation

- Optimization is a Basic Tool for Graphics
 - Widely Used
 - Flexible

- What Makes Optimization Important?
 - Need to Understand Graphics Problems
 - Conceptual View

Graphics and Vision

- Relation with Physical Universe
 - Photography: (2D representation)
 - Human Visual System: (3D reconstruction)

- Concepts
 - What are the Models?
 - What are the Problems?

Graphical Object

\(O = (U, f), \quad f : U \subset \mathbb{R}^n \rightarrow \mathbb{R}^m \)

- Geometric Support: \(U \)
 (shape)
- Attribute Function: \(f \)
 (properties)

* Dimension
 * Object: \(\text{dim}(U) \)
 * Space: \(n \)

Simple Example

- 2D Drawing

More Examples

- Images:
 - Grayscale, Color
 (simple shape, complex attributes)

- Models (Data)
 - Surfaces, Solids
 (complex shape, simple attributes)

* Graphical Object: Comprehensive Concept

Processing Graphical Objects

- Geometric Modeling
- Image Analysis
- Image Synthesis
- Image Processing
Operator on Graphical Objects

Graphical Problems

- Spaces of Graphical Objects (function spaces)

 \[x \in \mathcal{O} \]

- Operators on Spaces of Graphical Objects

 \[T : O_1 \rightarrow O_2 \]

 \[T(x) = y \]

Types of Problems

- Direct Problems
 - Given \(T \) and \(x \), find \(y \)

- Inverse Problems
 - Given \(T \) and \(y \), find \(x \) such that \(T(x) = y \)
 - Given \(x \) and \(y \), find \(T \)

Example: Visualization

- \(x \) is the scene
 - Geometry
 - Illumination
 - Camera

- \(T \) is the \textit{rendering operator}

 \[T(x) = y \]

- \(y \) is the rendered image

* Direct Problem

\[\Rightarrow \text{OBS: Vision - Inverse Problem} \]

Problem Characterization

* Hadamard (1902)

- Well-Posed Problem
 - Existence of Solution
 - Uniqueness of Solution
 - Continuous Dependence on Initial Conditions

- Ill-Posed Problem
 (doesn’t satisfy at least one of the above conditions)

Ill-Posed Problems

- Inherent in some Applications
 - Inverse Problems are usually Ill-Posed

- Sources of Ill-Posedness
 - Multiple Solutions
 - Numerical Errors

\[\Rightarrow \text{Need to get around Ill-Posedness} \]

- Optimization Methods
 - Best Solution (unique)
Example of Ill-Posed Problem

- Linear System: \(T x = y \),
 \[T = \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix} \], \(x = (u, v) \), \(y = (a, 2a) \), and \(a \in \mathbb{R} \)

- Solution \(y \) must lie on \(2u - v = 0 \)
 - Ill-Conditioning / Perturbations

- Well-Posed Solution
 \[y = \arg\min \| y, Tx \| \]

Describing Graphical Objects

- Computer Representation from Mathematical Model

Reconstruction Issues

- Why do we need to reconstruct?
 - Discretization gives incomplete information
 - Working in continuous domain avoid numerical errors
 - Semantics

- Reconstruction
 - Invertibility of the Representation Operator
 - Exact
 - Non-Exact

- Ill-Posed Reconstruction
 - Ambiguous Representation

Ambiguity in Models

- Wireframe Model

- Many Interpretations

Ambiguity in Images

- Two possible interpretations
Optimization in Graphics and Vision

- Techniques for selecting the "best" solution
 - Solve Ill-Posed Problems

- Applications in Graphics
 - Good Representations
 (Unique, Compact and Efficient)
 - Robust Operators
 (Numerical Computation)
 - Automatic Selection of Desired Parameters
 (User Interface)
 - Minimal Energy Solutions
 (Physical Simulations)

Overview of Optimization Techniques

- Optimization:
 Choosing the best among a set of alternatives

\[
\min_{x \in S} f(x)
\]

\(f: S \rightarrow R\) is the objective function

\(S\) is the set of feasible solutions

Classification of Techniques

Three different Criteria:

- Nature of the Solution Set \(S\)
- Description of the Solution Set \(S\)
- Properties of the Objective Function \(f\)

Classification of Techniques I

- Nature of the Set \(S\)
 - Variational
 - Continuous
 - Discrete
 - Combinatorial

Classification of Techniques II

- Constraints on the Set \(S\)
 \(x \in S\) subject to
 - Equality Constraints
 \(h_i(x) = 0, \ i = 1, \ldots, m\)
 - Inequality Constraints
 \(g_j(x) \leq 0, \ j = 1, \ldots, n\)

Classification of Techniques III

- Properties of the function \(f\)
 - Linear
 - Quadratic
 - Convex
 - Sparse
Classification of Techniques IV

Other Issues

- Local versus Global Solutions
- NP-complete Problems
- Probability and Optimization

Studying Optimization

- Approach:
 - Analyze from 3 different points of view

Optimization Techniques x Graphics Problems

Optimization in Graphics Applications

* Typical applications from different areas

- Selected Applications
 - Modeling: Variational Curves
 - Visualization: Camera Control
 - Vision: Edge Detection
 - Image Processing: Contour Following

Variational Modeling of Curves

- Energy Minimization Model
 \[\gamma(t) = \arg \min \ E_{\text{total}}(\gamma) \]

- Energy Functional
 - Shape Quality
 - Model Control
 \[E_{\text{total}}(\gamma) = E_{\text{internal}}(\gamma) + E_{\text{external}}(\gamma) \]

Internal Energy

- Fair Shape (Physical Model)
 \[E_{\text{internal}}(\gamma) = \lambda E_{\text{bend}} + (1 - \lambda) E_{\text{stretch}} \]

- Thin Plate
 \[E_{\text{bend}}(\gamma) = \int k^2(t) dt \]

- Membrane
 \[E_{\text{stretch}}(\gamma) = \int \| \gamma'(t) \| dt \]
External Energy

- Modeling Controls
 - Attraction / Repulsion Forces
- Punctual
 \[E_{\text{punctual}}(\gamma) = \min_t \| \gamma(t) - p \|^2 \]
- Directional
 \[E_{\text{directional}}(\gamma) = \min_t \| \gamma(t) \times p \| \]

Applications

- Reconstruction from Points
- Interactive Modeling

Camera Control

- Projective Transformation
 \[T(x) = p \]
- Inverse Problems
 - Compute Camera Transformation \(T \)
 - Compute Scene Points \(x \)
- Best Parameter Estimation
 - Camera Paths

Differential Camera Control

- Camera Motion with Constrains
 \[\text{minimize} \quad E = \frac{1}{2} \left\| \frac{dc}{dt} - \frac{dc}{dt} \right\| \]
 \[\text{subject to} \quad \frac{dp}{dt} - \frac{dp}{dt} = 0 \]

Image Analysis

- Primal Sketch
 - Edges
- David Marr’s Conjecture
 - Image is Characterized by its Edges
- Boundary Operator
 \(\text{(Computation of Edges)} \)
 - Geometric Methods
 * snakes

Snakes

- Geometric Computation of the Boundary
- Energy Minimization Approach
 - Boundary function (e.g. \(\text{grad } I(u,v) \))
Classification of Techniques (again)...

• Variational optimization
 S has infinite dimension
 (elements of S are functions)

• Continuous optimization
 S has finite dimension, i.e., $S \subset \mathbb{R}^n$
 (elements of S are vectors)

• Discrete optimization
 - usually, $S = \mathbb{Z}^n$

• Combinatorial optimization
 - concise description by exploiting combinatorial structure

What type of optimization technique?

• Often, the type of optimization technique to adopt is a matter of the user’s choice.

• Basic question:
 At which level to discretize?

Concrete Example (Image Processing)

• Contour extraction
 Find $x: [0, 1] \to \mathbb{R}^2$
 with $x(0) = P_0$ and $x(1) = P_1$
 as to minimize

$$\int_0^1 |x'(t)| \omega(x(t)) \, dt,$$

where

$$\omega(x) = \frac{1}{k + \|\nabla I(x)\|}$$

Possible approaches ... (1)

• Tackling directly the variational problem
 - infinitely-dimensional space
 - Euler-Lagrange formulation
 (partial differential equations)
 - solution process requires discretization

Example (Variational formulation)

Euler-Lagrange Equations

$$f(t, x, x') = \|x'(t)\| \omega(x(t))$$

$$\min \int f(t, x', x) \, dt$$

$$\frac{\partial f}{\partial x_i} = \frac{\partial}{\partial t} \left(\frac{\partial f}{\partial x'} \right), \quad i = 1, \ldots, n$$

Numerical Discretization

Possible approaches... (2)

• Approximating by an optimization problem in finite dimension
 - for instance, restrict attention to polynomials
 (characterized by a finite set of parameters)
 - use methods of continuous optimization in finite dimensions
Example (Continuous formulation)

Parametric Cubic Curves

\[x(t) = (x_1(t), x_2(t)) \]
\[x_1(t) = c_{10} + c_{11}t + c_{12}t^2 + c_{13}t^3 \]
\[x_2(t) = c_{20} + c_{21}t + c_{22}t^2 + c_{23}t^3 \]

8-dimensional space

Possible approaches... (3)

- Approximating by a discrete optimization problem
 - discretization occurs at the beginning of the process
 - for instance, consider a regular grid and solve a shortest path problem

Example (Discrete formulation)

\[\text{cost} = \text{length} \cdot \frac{1}{k + \|N\|} \]

The need for discretization

- Discretization is always needed...
- ... but can occur at different points of the solution process...
- ... leading to different computational schemes

Conclusions

* Optimization has many uses in Graphics

- Representation
 - Solves Ambiguity
 - Incorporates User-defined Criteria

- Algorithms
 - Efficient
 - Robust

- User Interface
 - Intuitive Controls

- Optimization Techniques
 - Main Issue: discretization