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Abstract

001 Sinusoidal neural networks have been shown effective as002
implicit neural representations (INRs) of low-dimensional003
signals, due to their smoothness and high representation ca-004
pacity. However, initializing and training them remain em-005
pirical tasks which lack on deeper understanding to guide006
the learning process. To fill this gap, our work introduces a007
theoretical framework that explains the capacity property of008
sinusoidal networks and offers robust control mechanisms009
for initialization and training. Our analysis is based on a010
novel amplitude-phase expansion of the sinusoidal multi-011
layer perceptron, showing how its layer compositions pro-012
duce a large number of new frequencies expressed as inte-013
ger combinations of the input frequencies. This relationship014
can be directly used to initialize the input neurons, as a form015
of spectral sampling, and to bound the network’s spectrum016
while training. Our method, referred to as TUNER (TUN-017
ing sinusoidal nEtwoRks), greatly improves the stability and018
convergence of sinusoidal INR training, leading to detailed019
reconstructions, while preventing overfitting.020

1. Introduction021

Sinusoidal multilayer perceptrons (MLPs) emerged as022
powerful implicit neural representations (INRs) for low-023
dimensional signals [3, 21, 28]. In this context, the INR024
f should fit the input data {xi,fi} as close as possible, i.e.025
f(xi) ≈ fi, without overfitting, thus encoding the signal026
implicitly in the MLP parameters. Therefore, two major027
properties are required: (1) f needs high representation028
capacity to fit {xi,fi}; (2) f should have bandlimit con-029
trol to avoid frequencies bypassing the sampling rate.030

Training sinusoidal MLPs to satisfy the above properties031
is challenging, as their initialization and optimization pro-032
cess often lead to undesirable local minima [13]. Recent033
work made strides towards more effective learning of these034
models. For example, SIREN [21] proposed an initializa-035
tion by projecting the input coordinates to a list of sines036
with frequencies randomly chosen in a range, similar to the037
Fourier feature mapping (FFM) approach [23]. This way,038
the model can reach high capacity, but may lead to over-039
fitting with high frequencies resulting in noisy reconstruc-040
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Figure 1. We present TUNER, a robust and theoretically grounded
training technique for sinusoidal MLPs, overcoming challenges in
initialization and enabling bandlimiting control. Our experiments
showcase TUNER’s strong initialization results against ReLU,
FFM [23], and SIREN [21] (top), where all models use the same
size and training conditions. TUNER achieves both fast and stable
convergence (bottom-left) while reconstructing gradients without
noise. We also compare with BACON [9] across two bandlimits
(bottom-right), enhancing quality and avoiding ringing artifacts.

tions. Defining an effective range for the bandlimit initial- 041
ization remains mostly empirical and often results in noise, 042
as the role of layer composition in generating frequencies 043
is not fully understood. Additionally, uniform initializa- 044
tion may introduce undesired high frequencies and make 045
it harder to model lower ones. More recently, BACON [9] 046
proposes tighter bandlimit control by applying multiplica- 047
tive filter networks (MFNs) [7] to limit the signal spectrum 048
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with a box filter, hard-truncating the spectrum. While effec-049
tive in many cases, this may lead to ringing artifacts. Also,050
this technique lacks non-linear activations (MFNs are not051
neural networks), preventing the representation of fine de-052
tails as efficiently as sinusoidal MLPs with similar sizes.053

Overall, initializing and training sinusoidal MLPs re-054
main empirical tasks which lack on deeper understanding to055
guide the learning process. To approach these problems, we056
present TUNER (TUNing sinusoidal nEtwoRks), a training057
scheme for sinusoidal MLPs consisting of a robust initial-058
ization and bandlimit mechanism that greatly improves the059
capacity and convergence of INRs. In contrast to previous060
work, TUNER is grounded on a theoretical framework that061
guides our learning approach. We develop a new trigono-062
metric identity (Thrm 1), resembling a Fourier series, and063
prove that such expansion produces a large number of fre-064
quencies in terms of the first layer (input frequencies). This065
explains the frequency generation process when composing066
layers, highlighting the importance of input layer initializa-067
tion for improving capacity. Remarkably, the amplitudes of068
these frequencies are given by complex functions of the hid-069
den weights, introducing a challenging training. To address070
this, we prove that those are bounded by a term depending071
only on the hidden weights (Thrm 2). We apply this result072
to control the bandlimit of the INR during training. Some of073
TUNER’s results are showcased in Fig. 1, in comparison to074
previous work, illustrating substantial enhancements to si-075
nusoidal INR modeling. In summary, our contributions are:076
• We introduce a novel trigonometric identity that expands077

each sinusoidal neuron into a wide sum of sines with fre-078
quencies being integer combinations of the input frequen-079
cies (Fig 2). The corresponding amplitudes, determined080
by the hidden weights, have a useful upper bound, offer-081
ing effective tools for controlling the resulting signal.082

• The expansion enables a robust initialization scheme for083
sinusoidal INRs, resulting in a high capacity MLP that084
trains significantly faster than previous approaches. First,085
we initialize the input neurons, as they determine the INR086
spectrum. Next, we initialize the hidden weights, consid-087
ering their role in setting the corresponding amplitudes.088

• We leverage the amplitude’s upper bound to control the089
bandlimit of a sinusoidal INR by designing schemes that090
bound the hidden weights during training. Together with091
our initialization, these bounds generate frequencies cen-092
tered around the input, resulting in more stable training093
compared to previous approaches.094

2. Related works095

Implicit neural representations (INRs) [25] are a trend-096
ing topic in machine learning, used to learn highly detailed097
signals in low-dimension domains. Current INR architec-098
tures use Fourier feature mappings [23] or sinusoidal acti-099
vation functions [21] to bypass the spectral bias [15] com-100

mon in ReLU multilayer perceptrons. The high represen- 101
tation capacity of sinusoidal INRs has motivated their use 102
to represent a wide range of media objects. Examples in- 103
clude audio [6, 21], images [4, 22], face morphing [18], 104
signed distance functions [9, 11, 19, 21, 26], displacement 105
fields [27], surface animation [10, 12], multi-resolution sig- 106
nals [5, 9, 14, 17, 24], among others. Most of these exploit 107
the derivatives of sinusoidal INRs in the loss functions. 108
Initialization. Considering sinusoidal activation functions 109
in neural networks is a classical problem [16]; however, 110
these INRs have been regarded as difficult to train [13]. 111
Sitzmann et al. [21] overcome this by presenting a specific 112
initialization scheme that allows training sinusoidal INRs, 113
avoiding instability and ensuring convergence. Despite 114
these advances, in practice, the initialization of such INRs 115
remains an empirical task. In this work, inspired by Fourier 116
series theory, we present a novel initialization method that 117
allows us to train INRs with great convergence. Recently, 118
several works have addressed the representation problem of 119
sinusoidal INRs from different perspectives. Zell et al. [28] 120
approached this problem by observing that the first layer of 121
a sinusoidal INR is similar to a Fourier feature mapping. 122
Here, in addition to improving the initialization of sinu- 123
soidal INRs, we present a training scheme for bounding the 124
spectra of these networks. 125
Control of spectrum. One of the main drawbacks of sinu- 126
soidal INRs is the lack of frequency control. SIREN [21] 127
addressed this by initializing the input frequencies uni- 128
formly in a range. While this ensures a bandlimit at the start 129
of training, as it progresses, the layer composition intro- 130
duces higher frequencies, leading to noisy reconstructions. 131
We avoid this by providing a novel initialization for the first 132
layer coupled with a bounding scheme which gives controls 133
for limiting the MLP spectrum. 134

Other works [5, 9] employed MFNs [7] to control the 135
bandlimit by applying a filter on the spectrum. How- 136
ever, this strategy usually introduces reconstruction artifacts 137
since MFNs hard-truncate the spectrum. BANF [20] em- 138
ployed a grid-based MLP with a spatial filter that leverages 139
grid resolution to constrain the highest frequency in the net- 140
work. In our experiments, we observe that this is prone to 141
creating higher frequencies which propagate as artifacts. In 142
contrast, TUNER, grounded in a theoretical result (Thrm 2), 143
guarantees a bandlimited MLP, and serves as a soft filter, 144
providing a representation without ringing artifacts. 145

3. Sinusoidal MLPs as Fourier series 146

This work addresses the problem of deriving an efficient 147
training scheme with controlled bandlimit for sinusoidal 148
MLPs. This section presents the mathematical definitions 149
and novel formulas for approaching this task. 150

Sinusoidal MLPs demonstrated high representational ca- 151
pacity with only a few hidden layers [17, 21, 28]. To un- 152
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derstand how layer composition encodes this capacity, we153

propose to thoroughly investigate the structure of a sinu-154

soidal MLP f : Rd ! R. For simplicity, we assume the155

codomain to beR, however the same analysis holds for156

dimension> 1. We assumef has a single hidden layer157

S : Rm ! Rn , with m; n 2 N. Precisely, we consider158

f (x) = C � S� D(x) + e; with D(x) = sin( ! x + ' ) being159

the input layer that projectsx 2 Rd into a list of harmon-160

ics (input neurons)D i (x)=sin ( ! i x + ' i ) with frequencies161

! = ( ! 1; : : : ; ! m ) 2 Rm � d and shifts' 2 Rm . LayerD is162

then composed withS(x)=sin( Wx+ b), whereW 2 Rn � m163

is the hidden matrix, andb2 Rn the bias. Finally,C � x + e164

is an af�ne transformation withC 2 Rn � 1 ande 2 R.165

We now present some properties of the sinusoidal lay-166

ers, which play key roles in the representation, and give a167

reinterpretation of them in terms of the network parame-168

ters. First, note that the hidden neuronsh(x) := S � D(x)169

are de�ned by composing the dictionaryD with the hidden170

sinusoidal layer which results in a list with elements171

hi (x) = sin
� mX

j =1

Wij sin (! j x + ' j ) + bi

�
: (1)172

The following is a key result of this work, which states173

that we can linearize a hidden neuron (1) as a sum of sines174

with frequencies and amplitudes determined by! andW.175

Theorem 1. Each neuronhi of a sinusoidal MLP has an176

amplitude-phase expansion of the form177178

hi (x) =
X

k2 Zm

� k sin
�
� k x + � k

�
; (2)179

where� k = hk; ! i , � k = hk; ' i + bi , and� k =
Q

j Jk j (Wij )180

is the product of the Bessel functions of the �rst kind.181

The Bessel functionsJk appear in the Fourier series of182

sin
�
a sin(x)

�
[2, Page 361] and Thrm 1 generalizes this183

result. The proof, details, and a generalization to deeper184

neurons can be found in the Supp. Mat.185

We now list some consequences of (2). First, the layer186

composition introduces a vast number of frequencies� k de-187

pending only on! , and shifts given by the input shift'188

and the biasb. More precisely, truncating the expansion189

by summing overjkj1 � B 2 N, 1 implies that each hid-190

den neuronhi could learn(2B +1) m � 1
2 non-null frequencies.191

This frequency generation gives a novel explanation of why192

composing sinusoidal layers greatly increases the network193

capacity. We will explore (2) to de�ne a robust initialization194

for the INR's input neurons in Sec 4.1.195

Secondly, note that the weightsW fully determine the196

amplitude� k of each harmonicsin
�
� kx + � k

�
. Thus, to197

derive our bounding scheme we need to focus only onW.198

Finally, we can derive a sine-cosine form of (2),199

hi (x)=
X

k2 Zm

Ak sin(� kx)+ Bk cos(� kx); (3)200

1jkj1 denotesmaxfj k1 j ; : : : ; jkm jg.

with Ak = � k cos(� k) andBk = � k sin(� k). Note that the 201

generated frequencies are independent of the indexi , thus 202

the hidden neurons share the same harmonics:sin
�
� kx

�
, 203

cos
�
� kx

�
. Since different combinations of the input fre- 204

quencies may correspond to a single frequency, (3) isn't205

(yet) the Fourier transform of the network. In other words,206

we could have two integer vectorsk; l 2 Zm such that 207

� k = � l . In the Supp. Mat., we show how to aggregate208

those frequencies to obtain the �nal Fourier transform. 209

To control the MLP's bandlimit, we need a method to 210

bound the amplitudes of� k . Precisely, for a given number 211

B > 0 we would needj� k j to be small forj� k j � B . For 212

this, we use the formula of� k to determine a bounding: 213

Theorem 2. The magnitude of the amplitudes� k in the ex- 214

pansion(2) is bounded by
Q m

j =1

�
jW ij j

2

� j k j j
1

jk j j ! : 215

Sec 4.2 presents a bandlimit control mechanism during216

training based on Thrm 2. 217

4. Initialization and frequency bounding 218

We presentTUNER, an initialization and frequency control 219

scheme for sinusoidal INRs. Our initialization considers in-220

teger input frequencies, based on a Fourier series interpreta-221

tion, and uses Thrm 1 to study the spectrum of layer compo-222

sition. Then, we use Thrm 2 to control the INR's bandlimit 223

during training. Fig 2 provides an overview of TUNER. 224

Throughout this section we present toy experiments to mo-225

tivate the method, usingf :R2 ! R3 in an image reconstruc- 226

tion setup; later, comprehensive experiments will be given227

in Sec 5. We report the MLP size using the parametersm, n 228

as they completely determine the model. We use the Kodak229

dataset's images [1] and train the INR using Adam [8]. 230

4.1. Initialization as spectral sampling 231

A key challenge in initializing a sinusoidal MLP lies in 232

de�ning its input frequencies! . Recall that the MLP gen- 233

erates frequencies as integer combinations of! , i.e., � k = 234P
i ki ! i , with the remaining weights representing their am-235

plitudes� k . This setup presents two main challenges. First,236

the initialization of! must enable� k to cover the signal's 237

spectrum; otherwise, the optimization cannot learn miss-238

ing frequencies. Fig 3 (left) shows an example where us-239

ing only odd frequencies leads to poor reconstruction. The240

second problem is the lack of �exibility for learning new 241

frequencies. For example, randomly initializing! may not 242

be enough since it may produce many high frequencies in243

order to over�t the signal, see Fig 4 (top). 244

To address these challenges, we introduce a novel ini-245

tialization. First, we restrict our MLP to periodic func- 246

tions, ensuring the training domain is in a full period. Such247

functions can be represented by sums of sines with integer248

frequencies, de�ning an orthogonal basis (Fourier series);249
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Figure 2.Overview of TUNER. To train a sinusoidal MLP (gray model, top-left), we employ two techniques derived from Thrms 1 and
2. First, we initialize the input frequencies! (green, bottom-left) with a dense distribution of low frequencies (red square) and a sparse
distribution of higher frequencies (green grid). This initialization gives �exibility to learn the remaining signal frequencies which are
simply integer combinations of! (the yellow nodes on the right), a consequence of the amplitude-phase expansion given by Theorem 1.
Note that this initialization resembles a frequency sampling since the training generates those new frequencies around! . Second, we
bound the coef�cients of the hidden layer weights (blue nodes) to ensure that the MLP remains within a speci�ed bandlimit. This approach
is effective because the amplitude-phase expansion (shown on the right) of each hidden neuron (purple nodes) indicates that the amplitudes
of the generated frequencies have an upper-bound depending only on the hidden weights (blue, bottom-right).

Figure 3. Choosing! as the cartesian product of the odd fre-
quencies without (left) or with (right) the frequencies(1; 0); (0; 1).
Note that adding them prevents sub-periods (see Supp. Mat.). We
trained for3000epochs on a2562 image with network parameters
m = 72 , n = 512, andb = 30 .

Figure 4. Uniform initialization of! (top), as in SIREN, and our
initialization (bottom). Ours offers better signal/gradient recon-
struction w/o gradient supervision. The MLPs(m =128; n =256)
with bandlimitb=87 were trained during3000epochs.

This aligns well with our analysis (Thrm 1). The main chal- 250

lenge is initializing! such that the generated frequencies� k 251

cover the full spectrum within a bandlimitB (Fourier basis). 252

More precisely, we initialize the weights! with integer 253

frequencies, that is! j 2 2�
p Zd, and freeze them during train- 254

ing, with p> 0 being the period of the INR. This guarantees 255

that the input neurons arep-periodic and Thrm 1 ensures 256

that such periodicity is preserved over layer composition.257

Additionally, (3) implies that we can rewrite the INR as: 258

f (x)=
X

k2 Zm

hC; Ak i sin
�
� kx

�
+ hC; Bk i cos

�
� kx

�
+ e: (4) 259

Since the generated frequencies� k only depend on the 260

frozen parameters! , the training is responsible for learn- 261

ing the amplitudes of the sine-cosine series in (4). 262

Let B be the signal's bandlimit. To ensure that the gen-263

erated frequencies do not bypassB , we cannot sample! 264

directly on[� B; B ]d since the MLP generates multiples of 265

these frequencies. Therefore, we sample! j in 2�
p [� b; b]d, 266

with b 2 (0; B ) being a threshold for the input frequencies. 267

Indeed, as the coef�cients of hidden matrixW are limited 268

by 2 (see Sec 4.2), the magnitudes ofAk andBk decrease 269

asjkj1 increases. This is a consequence of Thrm 2: 270

j� k j �
mY

j =1

�
jW ij j

2

�

jkj j!

j k j j

�
1

jk1j! : : : jkm j!
; i = 1 ; : : : ; n: (5) 271

Thus, the generated frequencies� k with smallk have more 272

in�uence over the expansion (4), mimicking Fourier series.273
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