Motion Cyclification
by
Time x Frequency Warping

Fernando Wagner da Silva
Luiz Velho
Jonas Gomes
Siome Goldenstein

Laboratório VISGRAF - IMPA - Brazil
LCG - COPPE - Sistemas / UFRJ - Brazil
VAST Lab. - University of Pennsylvania - USA
Presentation Outline

- Motion Processing
- Motion Re-timing
- Human Motion Cyclification
- Our Motivation
- Time x Frequency Warping of 1D Signals
- Cyclification of Articulated Figure Motion
- Video / Conclusions / Future Work
Motion Processing

- Modification and reuse of animation parameters

- Examples
 - kinematic and dynamic parameters.
 - motion capture data.

- Strategy
 - signal processing techniques.
Captured Data Processing

- Motion curves: positional and rotational values
 - sampling at joints of a real subject.

- Current techniques
 - filtering, transition, warping, blending.

- Motion re-timing
 - changes duration of motion (in time).
 - main applications: games, facial animation, ...
Motion Re-timing

- Two different approaches
 - reparametrization
 - local resampling of motion curves ⇒ warping in time domain [Silva et al.98].
 - frequency components are deformed ⇒ slow-motion and accelerated-time effects.
 - cyclification
 - detection and replication of motion cycles.
 - current methods require user interaction and work well only for perfectly periodic motions.
Human Motion Cyclification

- Motion curves have a complex structure
 - *shape*: basic motion patterns (low frequencies).
 - *texture*: subtleties, detail and noise (high frequencies).

- Captured motion curves are not perfectly periodic
 - biomechanic and external factors introduce a noise component fundamental to natural-looking motion [Perlin95].
 - we call this class of motion as *near-periodic*.
Detection of Motion Cycles

- Complicated analysis for *near-periodic* motions
 - requires user interaction [Cohen et al.96].
 - not suitable for real-time applications.

- Boundary discontinuity
 - happens during the transition between motion cycles.
 - smoothing methods are required [Sudarsky98].
Our Motivation

Develop an automatic method for periodic and near-periodic motion cyclification

- Our choice: warping on time x frequency domain
 - discrete transform: lapped cosine (LCT).
 - frequency contents are not deformed \(\Rightarrow\) “texture” of the movement is preserved.
 - cycles are detected by using an autocorrelation method.
Time x Frequency Decomposition of 1D Signals

- Temporal decomposition into frequency packets
 - cosine transform.

- Lapped cosine transform (LCT)
 - orthonormal basis.
 - window overlapping ⇒ reduces boundary discontinuity.
Time x Frequency Representation of 1D Signals

- Finite partition of the time x frequency plane
 - vertical axis: frequency elements of the LCT basis.
 - horizontal axis: overlapped time windows.
Time x Frequency Dilation of 1D Signals

● Affine dilation on the time axis
 – replication of atom elements of the time x frequency representation.
Time x Frequency Warping of 1D Signals

\[T(f) \]

\[W(T(f)) \]

\[T^{-1}(W(T(f))) \]
Automatic Cycle Detection

- **Fundamental cycle (FC)**
 - circular autocorrelation method: measures the similarity between translated versions of a signal.
 - FC is given by the distance between consecutive maximum points.
 - lowest frequency in the signal.

\[\int f(u) \cdot f(u-t) \]
Experiments (1 DOF)

- Re-timing with warp factor = 2.0
- Tests with sinusoidal functions
 - $sine$ with fixed period.
 - $sine$ with variable period and window size.
- Kinematic simulation of a pendulum
- Left upper arm joint motion curve
Experiment #1

– sine function with fixed period.
Experiment #2

- *sine* function with variable period and FC.

```
original
warped (FC = 1)
warped (FC = 15)
warped (FC = 60)
warped (FC detected = 115)
warped (FC = 150)
```
Experiment #3

- kinematic simulation of a pendulum.

\leftrightarrow *FC detected by the algorithm*

original

warped
Experiment #4

– left upper arm joint motion curve.

FC detected by the algorithm

original

warped
Cyclification of Articulated Figure Motion

- Articulated figure: complex structure
 - multiple joints and DOFs.
 - large amount of data to process and control.
 - *near-periodic* motions: synchronism between joints must be preserved by the warping algorithm.
Strong and Weak Phase Dependence

- **Strong**
 - direct structural relationship between joints (e.g. motion of knee and foot is influenced by upper leg joint motion).
 - common periodic behavior \Rightarrow phases are multiples of a predominant FC.

- **Weak**
 - indirect structural relationship between joints (e.g. motion of arms and legs).
 - happens due to balance and stability control.
Strong and Weak Phase Dependence

- **Walk sequence**
 - strong dependence between outer and inner joints in arms and legs.
 - weak dependence between arms and legs (cross synchronization).

- **Backflip kick sequence**
 - strong dependence between outer and inner joints in arms and legs.
 - weak dependence between arms and legs (coupled synchronization).
Detection of Predominant Cycle

- For each group of joints
 - apply autocorrelation method to all motion curves, generating a set of FCs.
 - take the greater FC.
 - warp all motion curves within joint group using as input the selected FC.
Conclusions

- New technique for cyclification of motion curves
 - time x frequency warping algorithm.
 - preserves the shape and texture of the curves.
 - works well with periodic and near-periodic curves.

- Cyclification of articulated figure motion
 - analysis of strong and weak dependencies between body segments.

- Video with results
Future Work

- Algorithm extension and improvement
 - complex human figure motion.

- Synchronization of facial animation and audio
 - non-linear audio editing.
 - film dubbing (lip-sync).

- Integration of method on a full animation system
 - transform simultaneously human motion, facial animation and sound.
Additional Info

http://www.visgraf.impa.br/mocap
Experiment #3

- *sine* function with variable period and noise.

FC detected by the algorithm

original

warped