Voronoi based clustering
Douglas Cedrim
Summary

- Motivation
- Voronoi clustering
- Topological clustering
- Results
- Directions
Motivation

Given a mesh M, we want to obtain another mesh that approximates M with a lower number of elements (vertices / faces)
Motivation

Manifold base mesh construction

Given a mesh M, we want to obtain another mesh that approximates M with a lower number of elements (vertices / faces)
Motivation

• Clustering

- Packing
- Selecting
- Meshing
Summary

- Motivation
- Voronoi clustering
 - Overview
 - Lloyd's relaxation
 - Some extensions for unstructured meshes
- Topological clustering
- Results
- Directions
Voronoi Diagram

• Continuous setting:

Given an open set Ω of \mathbb{R}^d, and $(x_i)_{i=1}^n$ points (seeds), a Voronoi tessellation is defined by

$$C_i = \{ w \in \Omega : \| w - x_i \| \leq \| w - x_j \|, j = 1, 2, \ldots, n, j \neq i \}$$
Voronoi Diagram

• Continuous setting:

Given an open set Ω of \mathbb{R}^d, and $(x_i)_{i=1}^n$ points (seeds), a Voronoi tessellation is defined by

• 2D case: Dual of a triangulation

$$C_i = \{ w \in \Omega : \| w - x_i \| \leq \| w - x_j \|, j = 1, 2, \ldots, n, j \neq i \}$$
Centroidal Voronoi Diagram (CVD)

- How to avoid skinny triangles?

An intuition...
Centroidal Voronoi Diagram (CVD)

- How to avoid skinny triangles?

An intuition...
Centroidal Voronoi Diagram (CVD)

- How to avoid skinny triangles?

An intuition...
Centroidal Voronoi Diagram (CVD)

• More formally...

 Given a region $C \subset \mathbb{R}^n$. The mass centroid z^* minimizes the functional

 $\int_C \| z^* - y \| \, dy$

 and is given by

 $z^* = \frac{\int_C y \, dy}{\int_C dy}$
Centroidal Voronoi Diagram (CVD)

• More generally...

Given a density function ρ, the mass centroid is given by

$$z^* = \frac{\int_C y\rho(y)dy}{\int_C \rho(y)dy}$$

and minimizes

$$\int_C \rho(y) \| z^* - y \| dy$$
Centroidal Voronoi Diagram (CVD)

- Definition: A CVD of Ω tesselates it in disjoint regions

$$C_i = \{ w \in \Omega : \|w - z_i\| \leq \|w - z_j\|, j = 1, 2, \ldots, n, j \neq i \}$$

with

$$z_i = \frac{\int_{C_i} y \rho(y) dy}{\int_{C_i} \rho(y) dy}$$

minimizing

$$E = \sum_{i}^{n} \int_{C_i} \rho(y) \|z_i - y\| dy$$
Centroidal Voronoi Diagram (CVD)

\[\rho \equiv 1 \]
Centroidal Voronoi Diagram (CVD)

\[\rho \equiv 1 \]
Centroidal Voronoi Diagram (CVD)

\[
\rho(x, y) = \exp(-10(x^2 + y^2))
\]
Centroidal Voronoi Diagram (CVD)

- Lloyd's algorithm:
 1. Select an initial set of k points (seeds);
 2. Construct a Voronoi tesselation associated with these seeds;
 3. Compute the mass centroids of each region;
 4. If this new set of points meets some convergence criterion, terminate; otherwise, return to step 1.
Centroidal Voronoi Diagram (CVD)

- Wide range of applications
 - Clustering
 - Optimal quadrature rules
 - Image processing
 (...)

Centroidal Voronoi Diagram (CVD)

• And for meshes?
 • Constrained Centroidal Voronoi Diagram (CCVD) [Du 2003]
 - Centroids problem
 • Geodesic metric on the mesh [Cedrim 2011]
 - High cost for a relaxation process
Centroidal Voronoi Diagram (CVD)

• And for meshes?
 • Valette [2008]
 - Initial clustering by average densities over n clusters
 - Cleaning process for disconnected cells
 - Adjusts cells according to tests on its boundaries
 - Centroids defined in order to minimize QEM
 - Polynomial fitting on local neighbourhood for densities
Summary

- Motivation
- Voronoi clustering
- Topological clustering
 - Cell definition
 - Centroids
 - Relaxation
 - Quality control
- Results
- Directions
Topological clustering

- Our approach aims to
 - Generate a base (coarse) mesh
 - Maintain properties of previously processed meshes

![Diagram showing the relationship between Uniform mesh, General mesh, Adaptive mesh, and Topological clustering, leading to a good quality coarser mesh.](image-url)
Topological clustering

• Main idea
 1. Define a cell decomposition
 2. Calculate each cell centroid
 3. Nested convergence
 1. Relaxation process
 2. Quality control
Topological clustering

• Cell definition
Topological clustering

• Cell definition
Topological clustering

• Cell definition
Topological clustering

- Cell definition
Topological clustering

• Cell definition
Topological clustering

• Cell definition
Topological clustering

• Cell definition
Topological clustering

- Cell definition

![Diagram of topological clustering with red and blue cells and white points]
Topological clustering

• Cell definition
Topological clustering

- Cell definition
Topological clustering

- Cell definition
Topological clustering

• Centroids
Topological clustering

• Centroids
Topological clustering

- Centroids
Topological clustering

- Centroids
Topological clustering

• Centroids
Topological clustering

- Centroids
Topological clustering

- Centroids
 - Remain as elements of the mesh
 - Connected cells
Topological clustering

• Relaxation process

“(...)meets some convergence criterion(...)”
Topological clustering

- Relaxation process
 “(...)meets some convergence criterion(...)”
- Cell converges locally if centroids and seeds became neighbours since k previous iterations
Topological clustering

- Relaxation process
 "(...)meets some convergence criterion(...)"
- Cell converges locally if centroids and seeds became neighbours since k previous iterations
Topological clustering

- Quality control
 - Average area deviation
Topological clustering

• Quality control
 • Average area deviation
 • Elements per cluster
 • Number of clusters
Results

- Uniform input mesh (1.9x average area)

file:genus3_1.9_24c
Results

- Uniform input mesh (1.5x average area)
Results

- Uniform input mesh (500 tri per cluster)
Results

- Adaptive input mesh (100 tri per cluster)
Results

- Adaptive input mesh (3.5x average area)
Results

- Seeds size
 Variable X Fixed
 - 0.5% from original mesh
- Isotropy and anisotropy

100 clusters

~ 10min

< 1min
Results

- Uniform input mesh (500 clusters – 0.33% of original)

149K

339s
Results

20K

2%
Directions

• New ways to control quality
• Speedup process
• Topological guarantees
Main references

- **SACHT, L. K. & PEREIRA, T. S.** - *Centroidal Voronoi Tessellation on Meshes*
Thank's for your attention!

More on:
www.lcad.icmc.usp.br/~cedrim/courses/cma_impa