Introduction to Computational Manifolds and Applications

Part 1 - Constructions

Prof. Marcelo Ferreira Siqueira
mfsiqueira@dimap.ufrn.br

Departmento de Informática e Matemática Aplicada
Universidade Federal do Rio Grande do Norte
Natal, RN, Brazil
Parametric Pseudo-Manifolds

Simplicial Surfaces

We will start investigating the construction of 2-dimensional PPM’s in \mathbb{E}^3.

In the previous lecture, we considered a polygon as a sketch of the shape of the curve we wanted to build. Now, we need another object to play the same role the polygon did.

We can think of a few choices, but the easiest one is arguably a polygonal mesh.

So, let us start with a triangle mesh, which is a formally known as a simplicial surface.
Definition 9.1. Given a finite family, \((a_i)_{i \in I}\), of points in \(\mathbb{E}^n\), we say that \((a_i)_{i \in I}\) is **affinely independent** if the family of vectors, \((a_ia_j)_{j \in (I-\{i\})}\), is linearly independent for some \(i \in I\).
Simplicial Surfaces

Definition 9.2. Let \(a_0, \ldots, a_d \) be any \(d + 1 \) affinely independent points in \(\mathbb{E}^n \), where \(d \) is a non-negative integer. The simplex \(\sigma \) spanned by the points \(a_0, \ldots, a_d \) is the convex hull of these points, and is denoted by \([a_0, \ldots, a_d] \). The points \(a_0, \ldots, a_d \) are the vertices of \(\sigma \). The dimension, \(\text{dim}(\sigma) \), of the simplex \(\sigma \) is \(d \), and \(\sigma \) is also called a \(d \)-simplex.

In \(\mathbb{E}^n \), the largest number of affinely independent points is \(n + 1 \).

So, in \(\mathbb{E}^n \), we have simplices of dimension 0, 1, \ldots, \(n \). A 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron. Furthermore, the convex hull of any nonempty subset of vertices of a simplex is a simplex.
Definition 9.3. Let $\sigma = [a_0, \ldots, a_d]$ be a d-simplex in \mathbb{E}^n. A face of σ is a simplex spanned by a nonempty subset of $\{a_0, \ldots, a_d\}$; if this subset is proper then the face is called a proper face. A face of σ whose dimension is k, i.e., a k-simplex, is called a k-face.
Definition 9.4. A simplicial complex \mathcal{K} in \mathbb{E}^n is a finite collection of simplices in \mathbb{E}^n such that

(1) if a simplex is in \mathcal{K}, then all its faces are in \mathcal{K};

(2) if $\sigma, \tau \in \mathcal{K}$ are simplices such that $\sigma \cap \tau \neq \emptyset$, then $\sigma \cap \tau$ is a face of both σ and τ.
Simplicial Surfaces

Definition 9.5. The dimension, $\dim(K)$, of a simplicial complex, K, is the largest dimension of a simplex in K, i.e., $\dim(K) = \max\{\dim(\sigma) \mid \sigma \in K\}$. We refer to a d-dimensional simplicial complex as simply a d-complex. The set consisting of the union of all points in the simplices of K is called the underlying space of K, and it is denoted by $|K|$. The underlying space, $|K|$, of K is also called the geometric realization of K.

![a 2-complex](image-url)
A simplicial complex is a **combinatorial object** (i.e., a finite collection of simplices).

The underlying space of a simplicial complex is a **topological object**, a subset of some \mathbb{E}^n.

A 2-complex
Simplicial Surfaces

Definition 9.6. Let \mathcal{K} be a simplicial complex in \mathbb{E}^n. Then, for any simplex σ in \mathcal{K}, we define two other complexes, the *star*, $\text{st}(\sigma, \mathcal{K})$, and the *link*, $\text{lk}(\sigma, \mathcal{K})$, of σ in \mathcal{K}, as follows:

$$\text{st}(\sigma, \mathcal{K}) = \{ \tau \in \mathcal{K} \mid \exists \eta \text{ in } \mathcal{K} \text{ such that } \sigma \text{ is a face of } \eta \text{ and } \tau \text{ is a face of } \eta \}$$

and

$$\text{lk}(\sigma, \mathcal{K}) = \{ \tau \in \mathcal{K} \mid \tau \text{ is in } \text{st}(\sigma, \mathcal{K}) \text{ and } \tau \text{ and } \sigma \text{ have no face in common} \}.$$
Definition 9.7. A 2-complex \mathcal{K} in \mathbb{E}^n is called a simplicial surface without boundary if every 1-simplex of \mathcal{K} is the face of precisely two simplices of \mathcal{K}, and the underlying space of the link of each 0-simplex of \mathcal{K} is homeomorphic to the unit circle, $S^1 = \{x \in \mathbb{E}^2 \mid \|x\| = 1\}$.

The set consisting of the 0-, 1-, and 2-faces of a 3-simplex is a simplicial surface without boundary.
Simplicial Surfaces

The simplicial complex consisting of the proper faces of two 3-simplices (i.e., two tetrahedra) sharing a common vertex is not a simplicial surface without boundary as the link of the common vertex of the two 3-simplices is not homeomorphic to the unit circle, S^1.
Parametric Pseudo-Manifolds

Simplicial Surfaces

From now on, we will refer to a simplicial surface without boundary as simply a simplicial surface. The underlying space of a simplicial surface is called its underlying surface.

The underlying surface of a simplicial surface is a topological 2-manifold in \mathbb{E}^n.

\[\mathcal{K} \quad |\mathcal{K}| \]
Simplicial Surfaces

Definition 9.8. Let \mathcal{K} be a simplicial complex in \mathbb{E}^n. For each integer i, with $0 \leq i \leq \text{dim}(\mathcal{K})$, we define $\mathcal{K}^{(i)}$ as the simplicial complex consisting of all j-simplices of \mathcal{K}, for every j such that $0 \leq j \leq i$. Moreover, if \mathcal{L} is a simplicial complex in \mathbb{E}^m, then a map

$$f: \mathcal{K}^{(0)} \rightarrow \mathcal{L}^{(0)}$$

is called a *simplicial map* if whenever $[a_0, \ldots, a_d]$ is a simplex in \mathcal{K}, then $[f(a_0), \ldots, f(a_d)]$ is a simplex in \mathcal{L}. A simplicial map is a *simplicial isomorphism* if it is a bijective map, and if its inverse is also a simplicial map. Finally, if there exists a simplicial isomorphism from \mathcal{K} to \mathcal{L}, then we say that \mathcal{K} and \mathcal{L} are *simplicially isomorphic*.
Parametric Pseudo-Manifolds

Simplicial Surfaces

\mathbb{E}^3 and \mathbb{E}^2 are simplicially isomorphic.

\mathcal{K} and \mathcal{L} are simplicially isomorphic.
Let $f : \mathcal{K}^{(0)} \to \mathcal{L}^{(0)}$ be given by $f(a_0) = b_5, \ f(a_1) = b_3, \ f(a_2) = b_2, \ f(a_3) = b_1, \ f(a_4) = b_0, \ f(a_5) = b_4$.

Simplicial Surfaces
It is easily verified that \(f \) is a simplicial isomorphism.
Given a simplicial surface, \mathcal{K}, in \mathbb{E}^3, we are interested in building a parametric pseudo-surface, \mathcal{M}, in \mathbb{E}^3 such that the image, \mathcal{M}, of \mathcal{M} is homeomorphic to the underlying surface, $|\mathcal{K}|$, of \mathcal{K}, and such that \mathcal{M} also approximates the geometry of $|\mathcal{K}|$.
Parametric Pseudo-Manifolds

Gluing Data

As we did before, let us first focus on the definition of a set of gluing data.

Unfortunately, this task is not as easy as it was in the one-dimensional case.

The key is to notice that the simplicial surface, \mathcal{K}, which is a combinatorial object, explicitly defines a topological structure on $|\mathcal{K}|$ (via the adjacency relations of all simplices).

So, we should define p-domains, gluing domains, and transition functions based on \mathcal{K}.
Gluing Data

As we will see during the next lectures, there are many choices for p-domains. But, in general, p-domains are associated with simplices of \mathcal{K}. For instance, the vertices of \mathcal{K}.

We can define a one-to-one correspondence between p-domains and vertices of \mathcal{K}.

\[\Omega_v \]
\[\Omega_w \]
\[\Omega_u \]

\[\mathbb{E}^3 \]
\[\mathbb{E}^2 \]
Gluing Data

The previous correspondence implies that the number of p-domains is equal to the number of vertices of \mathcal{K}. A distinct choice of correspondence may yield a different number.

The choice of a geometry for the p-domains is a key decision too.
Gluing Data

Intuitively, each p-domain is an open "disk" that is consistently glued to other p-domains in order to define the topology of the image, M, of the parametric pseudo-surface.

Since a vertex u of \mathcal{K} is connected only to the vertices of \mathcal{K} that belong to the link, $\text{lk}(u, \mathcal{K})$, of u in \mathcal{K}, it is natural to think of the p-domain, Ω_u, which is associated with vertex u, as the interior of a polygon in \mathbb{E}^2 with the same number of vertices as $\text{lk}(u, \mathcal{K})$.
Gluing Data

To simplify calculations, we can assume that Ω_u is a regular polygon inscribed in a unit circle centered at the origin of a local coordinate system of \mathbb{E}^2. We can also assume that one vertex of Ω_u is located at the point $(0, 1)$. Now, Ω_u is uniquely defined.
Gluing Data

Formally, let $I = \{ u \mid u \text{ is a vertex in } K \}$, n_u be the number of vertices of the link, $\text{lk}(u, K)$, of u in K, and P_u be the regular, n_u-polygon whose vertices are located at the points

$\left(\cos \left(i \cdot \frac{2\pi}{n_u} \right), \sin \left(i \cdot \frac{2\pi}{n_u} \right) \right)$,

for all $i = 0, 1, \ldots, n_u - 1$. Then, we can define $\Omega_u = \hat{P}_u$, where \hat{P}_u is the interior of P_u.
Parametric Pseudo-Manifolds

Gluing Data

Checking...

(1) For every $i \in I$, the set Ω_i is a nonempty open subset of \mathbb{E}^n called parametrization domain, for short, p-domain, and any two distinct p-domains are pairwise disjoint, i.e.,

$$\Omega_i \cap \Omega_j = \emptyset,$$

for all $i \neq j$.

Our p-domains are (connected) open subsets of \mathbb{E}^2. If we assume that they live in distinct copies of \mathbb{E}^2, then they will not overlap, and hence condition (1) of Definition 7.1 holds.
Gluing Data

What about gluing domains? The following picture should help us find a good choice:
Gluing Data

As we can see, the intersection of the stars, \(\text{st}(u, \mathcal{K})\) and \(\text{st}(w, \mathcal{K})\), of \(u\) and \(w\) consists of exactly two triangles. These triangles share an edge in both \(\text{st}(u, \mathcal{K})\) and \(\text{st}(w, \mathcal{K})\). So, we can think of defining the gluing domains as \textit{diamond-shaped}, open subsets of the \(p\)-domains.
Gluing Data

To precisely define gluing domains, we associate a 2-dimensional simplicial complex, K_u, with each p-domain Ω_u. The complex K_u satisfies the following two conditions: (1) $|K_u|$, is the closure, $\overline{\Omega_u}$, of Ω_u and (2) K_u is isomorphic to the star, $\text{st}(u, K)$, of u in K.

An obvious choice for K_u is the canonical triangulation of $\overline{\Omega_u}$:
Gluing Data

Fix any counterclockwise enumeration, u_0, u_1, \ldots, u_m, of the vertices in $\text{lk}(u, \mathcal{K})$.
Gluing Data

Let u'_0 be the vertex of \mathcal{K}_u located at the point $(0, 1)$.

Let

$$u'_0, u'_1, \ldots, u'_m$$

be the counterclockwise enumeration of the vertices of $\text{lk}(u', \mathcal{K}_u)$ starting with u'_0.
Gluing Data

Let

\[f_u : \text{st}(u, \mathcal{K})^{(0)} \rightarrow \mathcal{K}_u^{(0)} \]

be the simplicial map given by

\[f_u(u) = u' \]

and

\[f_u(u_i) = u'_i, \]

for \(i = 0, \ldots, m \).

It is easily verified that \(f_u \) is a simplicial isomorphism.
Gluing Data

Let u and w be any two vertices of \mathcal{K} such that $[u, w]$ is an edge in \mathcal{K}.

Let x and y be the other two vertices of \mathcal{K} that also belong to both $\text{st}(u, \mathcal{K})$ and $\text{st}(w, \mathcal{K})$.

Assume that x precedes w in a counterclockwise traversal of the vertices of $\text{lk}(u, \mathcal{K})$ starting at y.
Gluing Data

We can now define the gluing domains, Ω_{uw} and Ω_{wu}, as $\Omega_{uw} = \overset{\circ}{Q}_{uw}$ and $\Omega_{wu} = \overset{\circ}{Q}_{wu}$, where

$$Q_{uw} = [f_u(u), f_u(x), f_u(w), f_u(y)] \quad \text{and} \quad Q_{wu} = [f_w(w), f_w(y), f_w(u), f_w(x)]$$

are the quadrilaterals given by the vertices $f_u(u), f_u(x), f_u(w), f_u(y)$ of \mathcal{K}_u and the vertices $f_w(w), f_w(y), f_w(u), f_w(x)$ of \mathcal{K}_w, and $\overset{\circ}{Q}_{uw}$ and $\overset{\circ}{Q}_{wu}$ are the interiors of Q_{uw} and Q_{wu}.

Formally, for every \((u, w) \in I \times I\), we let

\[
\Omega_{uw} = \begin{cases}
\Omega_u & \text{if } u = w, \\
\emptyset & \text{if } u \neq w \text{ and } [u, w] \text{ is not an edge of } K, \\
\circ & \text{if } u \neq w \text{ and } [u, w] \text{ is an edge of } K.
\end{cases}
\]
Gluing Data

(2) For every pair \((i, j) \in I \times I\), the set \(\Omega_{ij}\) is an open subset of \(\Omega_i\). Furthermore, \(\Omega_{ii} = \Omega_i\) and \(\Omega_{ji} \neq \emptyset\) if and only if \(\Omega_{ij} \neq \emptyset\). Each nonempty subset \(\Omega_{ij}\) (with \(i \neq j\)) is called a gluing domain.

By definition, the sets \(\Omega_u, \emptyset\), and \(\check{Q}_{wu}\) are open in \(E^2\). Furthermore, the sets \(\check{Q}_{uw}\) and \(\check{Q}_{wu}\) are well-defined and nonempty, for every \(u, w \in I\) such that \([u, w]\) is an edge of \(K\).

So, for every \(u, w \in I\), we have that \(\Omega_{uw} \neq \emptyset\) iff \([u, w]\) is an edge of \(K\). Thus, for every \(u, w \in I\), \(\Omega_{uw} \neq \emptyset\) iff \(\Omega_{wu} \neq \emptyset\), and hence condition (2) of Definition 7.1 also holds.
Gluing Data

Our definitions of p-domain and gluing domain naturally lead us to a gluing process induced by the gluing of the stars of the vertices of \mathcal{K} along their common edges and triangles.

The gluing strategy we adopted here does not depend on the geometry of the p-domains and gluing domains, but on the adjacency relations of vertices and edges of \mathcal{K}.

However, the geometry of the p-domains and gluing domains have a strong influence in the level of difficulty of the transition maps and parametrizations we choose to use.

Despite of our commitment to a particular geometry, we will present next an axiomatic way of defining the transition maps. Our axiomatic definition should be as much independent of the geometry of the p-domains and gluing domains as possible.