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The objective of DEC

I Using geometric insight and exploring geometric meaning of
quantities (in the continuous setting).

I Faithful discretization, consistency with the continuous world.

I Preservation of essential structures at the discrete level.

I Faster and simpler computations.

I The extension of the exterior calculus to discrete spaces
including graphs and simplicial complexes.
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Differences between DEC and other methods

I Finite difference and particle methods - discretization of local
laws can fail to respect global structures and invariants.

I Finite element method - loss of fidelity following from a
discretization process that does not preserve fundamental
geometric and topological structures of the underlying
continuous models.

I Discrete exterior calculus - stores and manipulate quantities at
their geometrically meaningful locations, maintains the
separation of the topological (metric-independent) and
geometric (metric-dependent) components of quantities.
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Related disciplines

I Differential geometry - studying problems in geometry using
techniques of differential and integral calculus and algebra.

I Exterior calculus - geometry based calculus, the modern
language of differential geometry and mathematical physics.

I Algebraic topology of simplicial and CW complexes - studies
topological invariants, e.g., Betti numbers.

A simple torus has two non-contractible

circles on its surface.

Image from

https://categoricalounge.wordpress.com /tag/homology/
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Discrete differential geometry

I Discrete versions of forms and manifolds formally identical to
the continuous models.

I Forms represented as cochains and domains as chains of
simplicial or CW complexes.
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Definition

An n-dimensional simplicial manifold is an n-dimensional
simplicial complex for which the geometric realization is
homeomorphic to a topological manifold. That is, for each simplex,
the union of all the incident n-simplices is homeomorphic to an
n-dimensional ball, or half a ball if the simplex is on the boundary.

Image from [Desbrun et al., 2008].
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Definition
A p-chain on a simplicial complex K is a function c from the set of oriented
p-simplices of K to the integers, such that:

1. c(σ) = −c(σ̄) if σ and σ̄ are opposite orientations of the same simplex.

2. c(σ) = 0 for all but finitely many oriented p-simplices σ.

We add p-chains by adding their values, the resulting group is denoted Cp(K).

Definition
Let K be a simplicial complex and G an abelian group G , e.g. real numbers
under addition. The p-dimensional cochain ω is the dual of a p-chain cp in the
sense that ω is a linear mapping that takes p-chains to G :

ω : Cp(K)→ G , cp → ω(cp).

The group of p-dimensional cochains of K , with coefficients in G is denoted

Cp(K ,G).
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Fairing - general approach

I Energy E measuring the smoothness of the manifold.
I E is a real valued function of:

I immersion (vertex positions) f of the curve/surface, which
leads to PDE, or

I curvature, which leads to ODE.

I We reduce E via gradient descent.
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Curvature flow on positions

A discrete curve f is an ordered set of vertices f = (f0, . . . , fn),
fi ∈ R2. We define the pointwise curvature κ at a vertex i as

κi =
φi

Li
, (1)

where Li = 1
2 (|fi+1 − fi |+ |fi−1 − fi |) and φi is the exterior angle at

the corresponding vertex.
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Curvature flow on positions

The curvature energy is given by

E (γ) =
∑

i

κ2
i Li =

∑
i

φ2
i

Li
.

And the curvature flow is

γ̇ = −∇E (γ).

We integrate the flow using the forward Euler scheme, i.e.,

γt = γ0 + t · γ̇.
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Images generated by a program implemented by the author, its skeleton code

can be found in the course notes of [Crane, Schroder, 2012], Homework 4.
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Isometric curvature flow in curvature space

The curvature energy is now function of the curvature κ

E (κ) = κ2 =
∑

i

κ2
i .

And the curvature flow becomes

κ̇ = −∇E (κ) = −2κ.

We integrate the flow using the forward Euler scheme again and
obtain new vertex curvatures κi .
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To recover the curve, we integrate curvatures to get tangents:

Ti = Li (cos θi , sin θi ), where θi =
i∑

k=0

φk .

Then we integrate tangents to get the positions:

γi =
i∑

k=0

Tk .
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Integrability constraints

I Closed loop f must satisfy:∑
i

κiLi = 2πk,

for some turning number k ∈ Z. Which is equivalent to

T1 = Tn ⇐⇒
∑

i

κ̇i = 0.

I The endpoints must meet up, i.e., f0 = fn, which leads to:∑
i

κ̇i fi = 0.

I Overall, then, the change in curvature must avoid a
three-dimensional subspace of directions:

〈κ̇, 1〉 = 〈κ̇, fx〉 = 〈κ̇, fy 〉 = 0.
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Implicit Mean Curvature Flow

On the surface f : M → R3 we consider the flow

ḟ = 2HN = 4f ,

that is, we move the points in the direction of normal with
magnitude proportional to the mean curvature.
The Laplace operator 4f reads:

(4f )i =
1

2

∑
j

(cotαj + cotβj )(fj − fi ). (2)

And we use the backward Euler scheme

(I − t4)f t = f 0.

The matrix A = (I − t4) is highly sparse, therefore it is not too
expensive to solve the linear system.
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The quality of the resulting process highly depends on the
approximation of the Laplace operator:

I linear approximation, so called umbrella operator expects the
edges to be of equal length, which leads to distortion of the
shape,

I scale-dependent umbrella operator almost keeps the
original distribution of triangle sizes,

I cotangent discretization of the Laplace operator
(equation (2)) achieves the best smoothing with respect to
the shape, no drifting occurs.
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Smoothing of a mesh (a), (b) the umbrella operator, (c) the scale-dependent
umbrella operator, (d) the cotangent discretization of the Laplace operator.

Images are from [Desbrun, Meyer, Schroder, Barr, 1999].
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Conformal Curvature Flow

Keenan Crane in [Crane et al., 2013] suggests a curvature flow in
curvature space that yields conformal smoothing of surfaces.
Instead of using the potential energy E (f ) as a function of vertex
positions, he uses Willmore energy EW (µ) as a function of mean
curvature half density:

EW (µ) = ||µ||2.

Gradient flow with respect to µ becomes µ̇ = −2µ = −H.
Applying forward Euler scheme gives:

µt = µ0 − 2tH,

where H is the pointwise mean curvature of the current mesh
computed via the cotangent Laplacian (4f = 2HN).
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Constraints

In order to obtain conformality and avoid distortion or cracks, the
flow must satisfy several linear constraints, for details see
[Crane et al., 2013].
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Summary

I Using geometric insight can significantly improve geometry
processing.

I DEC offers operators consistent with their continuous
counterparts.

I These new tools improve computations, which become faster
end simpler.

The preceding set of images are from [Crane et al., 2013].
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