

<section-header><section-header><section-header><list-item><list-item><list-item><list-item>

Problem Set-up	
 Training set with 90% (889 images) and test set with 10% (99 images) 	S)
• Global Annotation $\begin{array}{l} \text{maximize } p(\mathbf{y} \widetilde{\mathbf{x}}) \\ \text{subject to } \mathbf{y} = [\mathbf{y}(1),,\mathbf{y}(M)] \in \{0,1\}^{Y}, \\ \ \mathbf{y}(k)\ _{1} = 1 \text{ for } \{k \in \{1,,M\} \mathbf{y}(k) > 1\}, \end{array}$	
Local Annotation	
$\begin{array}{l} \text{maximize } p(\mathcal{L} \mathbf{y},\widetilde{\mathbf{x}})\\ \text{ each } k \text{ that } \mathbf{y}(k) = 1 \text{ and } \mathbf{y}(k) = 1 \text{ has a respective bounding box } \mathbf{l}_j^* \in \mathcal{L}^*\\ \bullet \textbf{Pose Annotation} \end{array}$	
maximize $p(\mathcal{P} \mathcal{L}, \mathbf{y}, \widetilde{\mathbf{x}})$, head and torso are within the bounds of the local annotation	
• Retrieval $\widetilde{\mathbf{x}}^* = \arg\max_{\widetilde{\mathbf{x}} \in \mathcal{T}} p(\widetilde{\mathbf{x}} \mathbf{q})$	
	21

Methodologies

• Bag of features (BoF) [Zisserman'03,Csurka'04]

- · Train Y support vector machine classifiers (SVM) with one-versus-all
- $p(\mathbf{y}(k) = \pi_j | \widetilde{\mathbf{x}}, \theta_{SVM}(k, j))$, $k \in \{1, ..., M\}, j \in \{1, ..., |\mathbf{y}(k)|\}, \pi_j \in \{0, 1\}^{|\mathbf{y}(k)|}$
- Annotate by maximizing the global, local and pose annotation objective functions
- Retrieval by first annotating test images, and then retrieving using query vector

Methodologies

- Inverted Label Propagation (ILP)
- Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- Test image $\widetilde{\mathbf{x}}$, random walk $\mathbf{t} = [(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), ..., (\mathbf{x}^{(U)}, \mathbf{y}^{(U)})]$

• Label given random walk:
$$p(\mathbf{y}|\mathbf{\widetilde{x}}) = Z \sum_{r=1}^{R} p(\mathbf{y}|\mathbf{t}_r) p(\mathbf{t}_r|\mathbf{\widetilde{x}})$$

• Assume Markov process:

$$p(\mathbf{t}|\widetilde{\mathbf{x}}) = p([(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), ..., (\mathbf{x}^{(U)}, \mathbf{y}^{(U)})]|\widetilde{\mathbf{x}})$$
$$= \left[\prod_{u=2}^{U} p((\mathbf{x}^{(u)}, \mathbf{y}^{(u)})|(\mathbf{x}^{(u-1)}, \mathbf{y}^{(u-1)}), \widetilde{\mathbf{x}})\right] p((\mathbf{x}^{(1)}, \mathbf{y}^{(1)})|\widetilde{\mathbf{x}})$$

Methodologies

- Inverted Label Propagation (ILP)
 - Instead of finding F, estimate a vector containing the probability of landing in one of the training images after a random walk process
 - Combinatorial Harmonics (CH) approach [Carneiro'11]
 - Adjacency matrix takes into consideration visual and label similarity

$$\begin{split} \mathbf{U}(j,i) &= I_y(\mathbf{y}_i,\mathbf{y}_j) \times I_x(\mathbf{x}_i,\mathbf{x}_j) \times I_x(\mathbf{x}_j,\widetilde{\mathbf{x}}) \\ I_y(\mathbf{y}_i,\mathbf{y}_j) &= \sum_{k=1}^M \lambda_k \times \mathbf{y}(k)_i^\top \mathbf{y}(k)_j \\ I_x(\mathbf{x}_i,\mathbf{x}_j) &= \sum_{d=1}^X \min(\mathbf{x}_i(d),\mathbf{x}_j(d)) \end{split}$$

· Extend adjacency matrix with test image

 $\widetilde{\mathbf{U}} = \begin{bmatrix} \widetilde{\mathbf{U}} & \widetilde{\mathbf{u}} \\ \widetilde{\mathbf{u}}^T & 0 \end{bmatrix} \text{ with } \widetilde{\mathbf{u}} = [I_x(\mathbf{x}_1, \widetilde{\mathbf{x}}), ..., I_x(\mathbf{x}_{|\mathcal{D}|}, \widetilde{\mathbf{x}})]^\top$

• Minimize the energy function

$$E([\mathbf{G},\mathbf{g}]) = \frac{1}{2} \left\| [\mathbf{G},\mathbf{g}] \widetilde{\mathbf{L}} \begin{bmatrix} \mathbf{G}^T \\ \mathbf{g}^T \end{bmatrix} \right\|_2^2 \quad \widetilde{\mathbf{L}} \text{ is the Laplacian from the the adjacency matrix } \widetilde{\mathbf{U}}$$

• Closed form solution:
$$\mathbf{g}^* = (-\mathbf{L}_2^{-1}\mathbf{B}^T\mathbf{I})^\top$$
 with $\widetilde{\mathbf{L}} = \begin{bmatrix} \mathbf{L}_1 & \mathbf{B} \\ \mathbf{B}^T & \mathbf{L}_2 \end{bmatrix}$

<section-header><section-header><text><equation-block><equation-block><list-item><list-item><list-item><list-item>

30

Methodologies

- Structural Learning (SL) [Joachims'05]
 - Margin maximization quadratic problem

$$\min_{\mathbf{w},\xi} \|\mathbf{w}\|^2 + C \sum_{i=1}^{|\mathcal{D}|} \xi_i$$
s.t. $\mathbf{w}^\top \Psi(\mathbf{y}_i, \mathbf{x}_i) - \mathbf{w}^\top \Psi(\mathbf{y}, \mathbf{x}_i) + \xi_i \ge \Delta(\mathbf{y}_i, \mathbf{y}), \quad i = 1...|\mathcal{D}|, \quad \forall \mathbf{y} \in \{0, 1\}^Y$

$$\xi_i \ge 0, \quad i = 1...|\mathcal{D}|$$

where
$$\Delta(\mathbf{y}_i, \mathbf{y}) = \|\mathbf{y}_i - \mathbf{y}\|_1$$
 $\Psi(\mathbf{y}, \mathbf{x}) = \mathbf{x} \otimes \mathbf{y} \in \Re^{X \times Y}$

 Again, find global annotations for test images and then estimate local/ pose annotations and retrieval

<list-item><list-item><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Results

-

-

Global Annotation/Retrieval Results:

	Retrieval	Label-based global annotation			Example-based global annotation			
Models	Label	Average	Average	Average	Average	Average	Average	
Widdels	MAP	Precision	Recall	F1	Precision	Recall	F1	
RND	$0.08 \pm .06$	$0.06 \pm .01$	$0.07 \pm .01$	$0.06 \pm .01$	$0.26 \pm .02$	$0.21 \pm .01$	$0.22 \pm .01$	
BoF	$0.12 \pm .05$	$0.14 \pm .11$	$0.10 \pm .06$	$0.11 \pm .08$	$0.35 \pm .03$	$0.26 \pm .08$	$0.30 \pm .05$	
LP	$0.11 \pm .01$	$0.12 \pm .02$	$0.12 \pm .02$	$0.12 \pm .02$	$0.32 \pm .03$	$0.28\pm.02$	$0.26 \pm .02$	
LP-CC	$0.11 \pm .01$	$0.13 \pm .02$	$0.14 \pm .02$	$0.13 \pm .02$	$0.27 \pm .03$	$0.26\pm.03$	$0.25 \pm .03$	
ILP	$0.14 \pm .02$	$0.19 \pm .03$	$0.35\pm.03$	$0.25 \pm .04$	$0.24 \pm .02$	$0.48 \pm .05$	$0.30 \pm .02$	
ILP-O	$0.18 \pm .04$	$0.26\pm.05$	$0.26 \pm .05$	$0.26 \pm .05$	$0.39 \pm .03$	$0.39 \pm .04$	$0.38 \pm .03$	
MC	$0.17 \pm .01$	$0.24 \pm .03$	$0.11 \pm .02$	$0.15 \pm .02$	$0.37 \pm .02$	$0.28\pm.02$	$0.32 \pm .02$	
SL	$0.14 \pm .01$	$0.18 \pm .04$	$0.14 \pm .03$	$0.16\pm.03$	$0.34 \pm .04$	$0.31 \pm .04$	$0.32 \pm .04$	
							32	

Resul	Results							
• Loc	Local Annotation Results:							
	Label-ba	sed local ar	inotation	Example-b	pased local a	annotation		
Models	Average	Average	Average	Average	Average	Average		
	Precision	Recall	F1	Precision	Recall	F1		
RND	$0.04 \pm .01$	$0.04 \pm .01$	$0.04 \pm .01$	$0.13 \pm .03$	$0.18 \pm .04$	$0.15 \pm .02$		
BoF	$0.25 \pm .08$	$0.05 \pm .03$	$0.07 \pm .03$	$0.28 \pm .05$	$0.17 \pm .06$	$0.20 \pm .04$		
LP	$0.12 \pm .05$	$0.06 \pm .02$	$0.08 \pm .02$	$0.21 \pm .02$	$0.19 \pm .04$	$0.20 \pm .02$		
LP-CC	$0.08 \pm .02$	$0.06 \pm .01$	$0.07 \pm .01$	$0.12 \pm .02$	$0.17 \pm .04$	$0.14 \pm .02$		
ILP	$0.06 \pm .03$	$0.10 \pm .03$	$0.07 \pm .03$	$0.13 \pm .02$	$0.19 \pm .03$	$0.16 \pm .02$		
ILP-O	$0.15 \pm .05$	$0.16 \pm .05$	$0.15 \pm .05$	$0.21 \pm .03$	$0.24 \pm .03$	$0.23\pm.03$		
MC	$0.07 \pm .01$	$0.03 \pm .01$	$0.04 \pm .01$	$0.12 \pm .03$	$0.14 \pm .06$	$0.13 \pm .03$		
SL	$0.09 \pm .00$	$0.06 \pm .01$	$0.07 \pm .01$	$0.18 \pm .03$	$0.20 \pm .04$	$0.19 \pm .01$		
	u.			8		8	'	
						3	3	
					7 10 10 10 10 10	5		
8 2	2 2 3			An AL				
5				N=1				
				ALTA CE		2 ANEX	RE	
	Bar all	3		LA-ALE	LANE CL	C LARGER	E	

-

- AN

Results

	Label-ba	sed Pose an	inotation	Example-based Pose annotation			
Models	Average	Average	Average	Average	Average	Average	
	Precision	Recall	F1	Precision	Recall	F1	
RND	$0.00 \pm .01$	$0.00 \pm .01$	$0.00 \pm .01$	$0.00 \pm .02$	$0.00 \pm .01$	$0.00 \pm .01$	
BoF	$0.01 \pm .01$	$0.01 \pm .01$	$0.01 \pm .01$	$0.01 \pm .01$	$0.01 \pm .01$	$0.01 \pm .01$	
LP	$0.00 \pm .00$	$0.00 \pm .00$	$0.00 \pm .00$	$0.00 \pm .00$	$0.00 \pm .00$	$0.00 \pm .00$	
LP-CC	$0.00 \pm .00$	$0.00 \pm .00$	$0.00 \pm .00$	$0.00 \pm .00$	$0.00 \pm .00$	$0.00 \pm .00$	
ILP	$0.01 \pm .01$	$0.01 \pm .01$	$0.01 \pm .01$	$0.01 \pm .01$	$0.01 \pm .01$	$0.01 \pm .01$	
ILP-O	$0.05\pm.04$	$0.08 \pm .06$	$0.06 \pm .05$	$0.06\pm.02$	$0.07 \pm .02$	$0.06 \pm .02$	
MC	$0.00 \pm .00$	$0.00 \pm .00$	$0.00 \pm .00$	$0.00 \pm .00$	$0.00 \pm .00$	$0.00 \pm .00$	
SL	$0.00 \pm .00$	$0.00 \pm .00$	$0.00 \pm .00$	$0.00 \pm .00$	$0.00 \pm .00$	$0.00 \pm .00$	
						34	

Pose Annotation Results

