The complexity of classical music networks

Vitor Guerra Rolla

Postdoctoral Fellow at Visgraf

Juliano Kestenberg PhD candidate at UFRJ

Luiz Velho Principal Investigator at Visgraf

Summary

- Introduction
- Related Work
- **Musical Networks**
- Scale-free
- Small-world
- Results
- Fractal Nature of Music
- **Conclusions and Future Work**

Introduction

Introduction

40 pieces of classical music \rightarrow MIDI format

Bach (6), Beethoven (9), Brahms (1), Chopin (1), Clementi (6), Haydn (5), Mozart (7), Schubert (4), and Shostakovitch (1)

Built a network from each piece of music

Perform scale-free and small-world tests

<u>Related Work → Music</u>

- Liu et al.

"Complex network structure of musical compositions: Algorithmic generation of appealing music"

Physica A: Statistical Mechanics and its Applications (2010)

- Perkins et al.

"A scaling law for random walks on networks" Nature Communications (2014)

- Ferretti

"On the Complex Network Structure of Musical Pieces: Analysis of Some Use Cases from Different Music Genres" Multimedia Tools and Applications (2017) I.F. 2,243 63 citations

I.F. 12,124 18 citations

I.F. 1,530 1 citation

- Liu et al.

 "Complex network structure of musical compositions: Algorithmic generation of appealing music"
 Physica A: Statistical Mechanics and its Applications (2010) Scale-free: Yes Small-world: Yes

- Perkins et al.

"A scaling law for random walks on networks" Nature Communications (2014) Scale-free: Yes Small-world: No report

I.F. 12,124 18 citations

I.F. 2,243

63 citations

- Ferretti

"On the Complex Network Structure of Musical Pieces: Analysis of Some Use Cases from Different Music Genres"

Multimedia Tools and Applications (2017)

Scale-free: Yes Small-world: Yes

I.F. 1,530 1 citation

- Liu et al.

"Complex network structure of musical compositions: Algorithmic generation of appealing music"

Physica A: Statistical Mechanics and its Applications (2010) 202 pieces → Classic & Chinese Pop

```
- Perkins et al.
```

"A scaling law for random walks on networks"
Nature Communications (2014)
8473 pieces → Folk from Europe & China

I.F. 2,243 63 citations

I.F. 12,124 18 citations

- Ferretti

"On the Complex Network Structure of Musical Pieces: Analysis of Some Use Cases from Different Music Genres" Multimedia Tools and Applications (2017)

8 pieces → Rock, Blues, Jazz...

I.F. 1,530 1 citation

<u>Related Work → Math Tests</u>

Related Work -> Math Tests

- Clauset et al.

"Power-law distributions in empirical data" Siam Review (2010)

- Watts & Strogatz

"Collective dynamics of 'small-world' networks" Nature (1998)

- Newman & Watts

"Renormalization group analysis of the small-world network model" Physics Letters A - Elsevier (1999) I.F. 4,897 5947 citations

I.F. 40,137 35731 citations

I.F. 1,772 1364 citations

Musical Networks

Musical Networks

Mozart's Sonata No. 16 (KV 545) first bar

Musical Networks

Project's website:

http://w3.impa.br/~vitorgr/CNA/index.html

Python/NetworkX

Software for complex networks

https://networkx.github.io/

Scale-free Property

Scale-free Property

Node degree distribution \rightarrow Power law estimation

Least squares method (Old) \rightarrow used by Liu and Perkins

- Cohen & Havlin

"Scale-free networks are ultrasmall" $\longrightarrow 2 < \alpha < 3$ Physical Review Letters (2003) I.F. 8,462 801 citations

- Liu et al.

Multimedia Tools and Applications (2017)

Small-world Property

Small-world Property

- Liu et al.

Multimedia Tools and Applications (2017)

<u>Results</u> → Scale-free

$Results \rightarrow Scale-free$

Clauset's test – i & ii steps:

(a) Sonata No. 23 in F minor (Appassionata) Opus 57 (1804) composed by Beethoven, (b) Sonata No. 12 in F major KV 332 (1783) composed by Mozart, (c) Piano Sonata in D major Hoboken XVI:33 (1778) composed by Haydn, (d) Violin partita No. 2 in D minor BWV 1004 (1720) composed by Bach, (e) Sonatina in F major Opus 36 No. 4 Opus 36 (1797) composed by Clementi, and (f) Sonatina in C major Opus 36 No. 3 Opus 36 (1797) also composed by Clementi.

$Results \rightarrow Scale-free$

Clauset's test – iii step:

Likelihood Ratio Test														
Musical Network	Power law (KS)	Expo	onential	Log-normal		Stretched exponential		Scafe-						
	p-value	LR	p-value	LR	p-value	LR	p-value	mee:						
(a)	0.590	9.88	0.00	6.36	0.00	4.09	0.00	YES						
(b)	0.424	4.82	0.00	2.67	0.00	1.61	0.10	YES						
(c)	0.285	5.54	0.00	3.78	0.00	2.87	0.00	YES						
(d)	0.004	3.16	0.00	-0.03	0.97	-1.15	0.24	No						
(e)	0.090	-0.28	0.77	-0.42	0.67	-0.44	0.65	No						
(f)	0.000	4.91	0.00	3.84	0.00	2.55	0.01	No						

(a), (b), and (c) present the scale-free property.

- (d) behaves more like a log-normal
- (e) behaves like an exponential distribution
- (f) did not behave like any distribution tested.

<u>Results</u> → Small-world

$Results \rightarrow Small-world$

Musical Net	Rando	m Networks	Small-world Networks				
	MSPL	ACC	MSPL	ACC	MSPL	ACC	Small- world?
Beethoven Opus 81	6.02	0.15	6.24	0.00	5.91	0.07	YES
Brahms Opus 1	9.33	0.07	7.55	0.00	6.53	0.07	No
Chopin Opus 35	12.64	0.09	6.50	0.00	5.95	0.08	No
Clementi No.1	6.37	0.14	5.14	0.01	4.51	0.07	No
Mozart KV330	4.89	0.09	5.42	0.00	5.47	0.06	YES
Mozart KV331	5.24	0.11	5.78	0.00	5.74	0.08	YES
Mozart KV332	5.51	0.11	5.96	0.00	5.84	0.07	YES
Mozart KV333	5.02	0.18	5.77	0.00	5.96	0.06	YES
Schubert D784	13.67	0.06	7.10	0.00	5.91	0.08	No
Shostakovich Opus 57	9.68	0.05	6.93	0.00	5.86	0.08	No

MSPL and ACC for musical networks, random networks, and smallworld networks.

Final → Results

Results

Fractal Nature of Music

Fractal Nature of Music

- Schroeder

"Is there such a thing as fractal music?" Nature (1987) I.F. 40,137 19 citations

- Henderson-Sellers & Cooper

"Has classical music a fractal nature?—A reanalysis" Computers and the Humanities (1993) I.F. 0,738 10 citations

Fractal Nature of Music

- Song et al.

"Origins of fractality in the growth of complex networks" Nature Physics (2006) I.F. 22,806 424 citations

Conclusions & Future Work

Conclusions

Previous work (Liu et al., Perkins et al., Ferreti) disregarded:

- Harmony
- One piece per network
- Updated statistical methods \rightarrow Clauset et. al.

Our work suggests that classical music <u>may or may not</u> present the scale-free and the small-world properties

Future Work

Evaluation of other music genres

Investigation of edge weight distribution

Evaluation of fractal dimension according to Song et al. algorithms

Understanding the community structure of our musical networks.

Computer Music @ VISGRAF

Thank you!

Extra – Hubs

Although we provide a precise evaluation of the power law, our musical networks did not present a long tail as many scale-free networks, i.e., we could not identify a small number of nodes with very high degree. On the other hand, according to Janssen due to the finite size of real-world networks the power law inevitably has a cut-off at some maximum degree. Such a cut-off can be clearly verified in Figures 2(a), 2(b), and 2(c).

- Janssen

"Giant component sizes in scale-free networks with power-law degrees and cutoffs"

Europhysics Letters (2016)

I.F. 1,957 3 citations

Extra – ACC

Local clustering coefficient for undirected graphs:

$$C_i = rac{2|\{e_{jk}: v_j, v_k \in N_i, e_{jk} \in E\}|}{k_i(k_i-1)}$$

Average cluster coefficient:

$$ar{C} = rac{1}{n} \sum_{i=1}^n C_i.$$

Extra – Cohen & Havlin

- Cohen & Havlin

"Scale-free networks are ultrasmall"

Physical Review Letters (2003)

I.F. 8,462 801 citations

A power law distribution only has a well-defined mean over $x \in [1, \infty]$, if a > 2.

When a > 3, it has a finite variance that diverges with the upper integration limit

$$X_{max}$$
 as $\langle x^2 \rangle = \int_{X_{max}}^{X_{min}} x^2 P(x) \sim X_{max}^{3-a}$