## Editing triangulated surfaces



Nayla López, Orlenys López, Havana Univ. Victoria Hernández, Jorge Estrada, ICIMAF

In colaboration with:
Luiz Velho, IMPA
Dimas Martínez, Alagoas Univ.

## 1-Motivation

How to modify interactively a triangulated surface?


## Previous Work

## Laplacian Surface Editing

## 2004

O. Sorkine ${ }^{1}$, D. Cohen-Or ${ }^{1}$, Y. Lipman ${ }^{1}$, M. Alexa ${ }^{2}$, C. Rössl ${ }^{3}$ and H.-P. Seidel ${ }^{3}$
${ }^{1}$ School of Computer Science, Tel Aviv University
${ }^{2}$ Discrete Geometric Modeling Group, Darmstadt University of Technology
${ }^{3}$ Max-Planck Institut für Informatik, Saarbrücken


FiberMesh:
Designing
Freeform Surfaces with 3D Curves

TU Berlin
The University of Tokyo TU Berlin
TU Berlin


## General strategy: given a triangulated surface S

- Select a set of control points on S

- Construct a control curve on S interpolating the control points.

- Define a control region.
- Edit the control curve.

- Compute the deformation of the control region.



## 2-Geodesic curve- Geodesic distance

## Geodesic curve CG(A, B)

$C G(A, B)$ : Shortest curve on the surface passing through $A$ and $B$.

## Geodesic distance $\mathrm{Dg}(\mathrm{S} ; \mathrm{AB})$

$D g(S ; A B)$ : length between $A y B$ of the geodesic curve $C G(A, B)$

## Computing Geodesic distance

## DIFFERENCIABLE SURFACE

Eikonal equation: nonlinear PDE

$$
\left\|\nabla D_{g}(P)\right\|=1
$$

NON DIFFERENCIABLETRIANGULATED SURFACE

Good approximation to the gradient function restricted to a triangle

$$
\nabla D_{g}(P)=\left.\left(\frac{\partial D_{g}}{\partial x}, \frac{\partial D_{g}}{\partial y}\right)\right|_{P}
$$

## Geodesic curve- Geodesic distance

## Theoretically

Geodesic distance is computed as the length of the geodesic curve

## Practically

Solving the Eikonal equation it is possible to compute approximately the Geodesic Distance from any point on a triangulated surfaced to a prescribed boundary. Geodesic distances can be used to compute the geodesic curve passing through two points.

## 3-Fast Marching Method

## Idea Kimmel \& Sethian, 1998

- To sweep the front ahead in an upwind fashion by considering a set of points in a narrow band around the existing front

- Boundary vertices

Vertices where the geodesic distance is already known
$\square$ Vertices in the front
Vertices in the narrow band of the front

$$
\mathrm{d}=0<\mathrm{d}_{1}<\mathrm{d}_{2}
$$

## Fast Marching Method

## Geodesic distance function restricted to a triangle

- $\operatorname{Dg}(\mathrm{C})$ is computed from all triangles $A B C$ having $C$ as a vertex if the geodesic distance is already known in the other vertices $A, B$.
- The procedure for computing $\mathrm{Dg}(\mathrm{C})$ is different for acute and obtuse triangles.


## Acute triangles

Geodesic distance function in $A B C$ is approximated by a linear function interpolating $\operatorname{Dg}(\mathrm{A})$ and $\mathrm{Dg}(\mathrm{B})$ and satisfying the Eikonal Equation. $\mathrm{Dg}(\mathrm{C})$ is computed as solution of a quadratic equation.

## Obtuse triangles

Splits the obtuse angle into two acute ones, joining $C$ with any point in the sector between the lines perpendicular to CB and CA . Extend this sector recursively unfolding the adjacent triangles, until a new vertex E is included in the sector. Compute $\mathrm{Dg}(\mathrm{C})$ as the distance between C and E on the unfolded triangles plane.


## Extensions of FMM

## 4 extensions

... are neccesary to implement some steps of the method for edition of triangulated surfaces...

## 3.1-Computing a geodesic neighborhood

## ...stop the advancing front when the

 geodesic distance reach a given value

$$
d=0<d_{1}<
$$


$2<$

## 3.2-Computing the geodesic distance for a point which is not a vertex of the triangulation

3 cases depending on the position of the point P: update the list of adjacent points for the vertices of all triangles containing $P$


## 3.3-Stop the advancing front when the geodesic distance has been computed for all points in the target set

boundary $P=\left\{P_{i}\right\}$

$$
D g\left(P_{j}, A\right)=\min _{i} D_{g}\left(P_{j}, a_{i}\right)
$$



Classic FMM


Modification of FMM

Vertices where the geodesic distance has been computed $\square \quad$ Vertices in the front
$\square$ Vertices in the narrow band of the front

## 3.4-Computing the closest vertex



Yellow points are closer to $P_{1}$ than to the rest of the boundary points

$$
\operatorname{Dg}\left(P P_{0}\right)<\operatorname{Dg}\left(P P_{1}\right)<\operatorname{Dg}(P \quad)<\operatorname{Dg}\left(P P_{3}\right)
$$

## 4-Computing Geodesic curves

Given two consecutive control points $A, B$ on the triangulated surface S... D. Martínez, L. Velho, P. C. Carvalho, 2005

- Compute an initial approximation to the geodesic curve passing through A,B using FMM.
- Correct the initial approximation of the geodesic curve.


## Computing the initial approximation to the geodesic curve



$$
C G(A B)=C G(A C) U(C B)
$$

## Discrete geodesic curvature



$$
\theta_{r}=\sum \alpha_{i} \quad \theta_{l}=\sum \beta_{i}
$$



$$
\kappa_{g}(P)=\frac{2 \pi}{\theta}\left(\frac{\theta}{2}-\theta_{r}\right)
$$

$$
\theta=\theta_{l}+\theta_{r}
$$

## Iterative correction of the polygonal approximation to the geodesic curve

A node P of the current polygonal approximation can be corrected if $\theta_{r}<\pi$ or $\theta_{l}<\pi$

$$
\theta_{l}<\pi
$$



## Correction



## Correction of the inicial approximation

## Correction



Higest geodesic curvature point


Initial approximation


Correction

## Some iterations of the correction process


$\pi$


## 5-Defining the control curve and the control region



Control curve: a geodesic polygonal curve interpolating a set of given control points

Control region: set of vertices $P$ on the surface such that

$$
D_{g}(P)<M
$$

## 6-Deformation of the control curve

Computing the normal vector at the vertices of the control curve


## Deformation of the control curve



Parametrizing the control curve by chord length

$$
t_{i+1}=t_{i}+\left\|P_{i+1}-P_{i}\right\|
$$

Magnitude of the displacement for a vertex in terms of a cubic B-spline.

New position of $P_{i} \Longleftrightarrow \quad P_{i}^{\prime}=P_{i}+B_{3}\left(t_{i}\right) N_{i}$

Changing the position of the knots to modify the geometry of the B-spline curve


## Moving the control curve vertices



## 7-Edition of the control region.

## Magnitude of the displacement for $P$ in the interest region

$$
(\mathrm{P})=(1-\mathrm{Dg}(\mathrm{P}, \mathrm{Pc}) / \text { dismax }) h(\mathrm{Pc})
$$

$\mathrm{Dg}(\mathrm{P}, \mathrm{Pc})=0$


$$
h(P)=h(P c)
$$



$h(P)=(1-1) h(P c)=0$

## Edition of the control region

- Selected points on the control region
- Points on the boundary of the control region

Scaled normal vectors at selected points


## Edition of the control region


(1)

(2)

## Edition of the control region


(2)
(3)

## Edition of the control region


(3)

(4)

## 8-Implementation

## Data structure:

- HalfEdge

Libraries:

- TriangMesh
- OpenGL

User Interface:

- GLUT
- GLUI


## Programming Language:

- C++


## Options for users

Modify the geometry of the control curve.

Selection of the width of the control region.

Definition of the displacement magnitude.


## Conclusions

$\Rightarrow$ A new method for editing a triangulated surface S in an instuitive way has been proposed.
$\Rightarrow$ Deformations are introduced by means of:

- control curve: defined as a piecewise geodesic curve on S interpolating given control points on S.
- control region: geodesic neighborhood on S of the control curve
- deformations in the control curve: introduced by means of a cubic B-spline curve
- displacements of points in the control region: in the direction of the normal vectors on S , with magnitude depending on the geodesic distance to the control curve.


## Future Work

$\Rightarrow$ •To introduce closed curves as control curves.
$\Rightarrow$ •Study new deformation patterns for the control curve.

- To improve the computation of the initial approximation to the geodesic curve passing throught 2 prescribed points.
- To extend the method to introduce deformations preserving surface details.


## References

-D. Martinez, Geodesic-based modeling on manifold triangulations, Ph.D. Thesis, IMPA, Brasil, 2006.

- R. Kimmel and J.A. Sethian, Computing geodesic paths on manifolds, In Proceedings of the National Academy of Sciences of the USA 95 (1998), no. 15, 8431-8435.
- J. A. Sethian, A fast marching level set method for monotonically advancing fronts, In Proceedings of the National Academy of Sciences of the USA 93 (1996), no. 4, 1591-1595.

