Editing triangulated surfaces

Nayla López, Orlenys López, Havana Univ.
Victoria Hernández, Jorge Estrada, ICIMAF

In collaboration with:
Luiz Velho, IMPA
Dimas Martínez, Alagoas Univ.
1-Motivation

How to modify interactively a triangulated surface?
Previous Work

Laplacian Surface Editing

O. Sorkine¹, D. Cohen-Or¹, Y. Lipman¹, M. Alexa², C. Rössl³ and H.-P. Seidel³

¹School of Computer Science, Tel Aviv University
²Discrete Geometric Modeling Group, Darmstadt University of Technology
³Max-Planck Institut für Informatik, Saarbrücken

FiberMesh: Designing Freeform Surfaces with 3D Curves

Andrew Nealen
Takeo Igarashi
Olga Sorkine
Marc Alexa

TU Berlin
The University of Tokyo
TU Berlin
TU Berlin
General strategy: given a triangulated surface S

1. Select a set of control points on S

2. Construct a control curve on S interpolating the control points.

3. Define a control region.
• Edit the control curve.

• Compute the deformation of the control region.
2-Geodesic curve- Geodesic distance

Geodesic curve \(CG(A, B) \)

\(CG(A, B) \): Shortest curve on the surface passing through A and B.

Geodesic distance \(Dg(S; AB) \)

\(Dg(S; AB) \): length between A and B of the geodesic curve \(CG(A,B) \).
Computing Geodesic distance

DIFERENCIABLE SURFACE

Eikonal equation: nonlinear PDE

\[\| \nabla D_g(P) \| = 1 \]

NON DIFFERENCIABLE TRIANGULATED SURFACE

Good approximation to the gradient function restricted to a triangle

\[\nabla D_g(P) = \left(\frac{\partial D_g}{\partial x}, \frac{\partial D_g}{\partial y} \right) \bigg|_P \]
Geodesic curve - Geodesic distance

Theoretically

Geodesic distance is computed as the length of the geodesic curve.

Practically

Solving the Eikonal equation it is possible to compute approximately the Geodesic Distance from any point on a triangulated surface to a prescribed boundary. Geodesic distances can be used to compute the geodesic curve passing through two points.
3-Fast Marching Method

Idea Kimmel & Sethian, 1998

• To sweep the front ahead in an upwind fashion by considering a set of points in a narrow band around the existing front

- Boundary vertices
- Vertices where the geodesic distance is already known
- Vertices in the front
- Vertices in the narrow band of the front

\[d=0 < d_1 < d_2 < d_3 \]
Fast Marching Method

Geodesic distance function restricted to a triangle

- Dg(C) is computed from all triangles ABC having C as a vertex if the geodesic distance is already known in the other vertices A, B.
- The procedure for computing Dg(C) is different for acute and obtuse triangles.

Acute triangles

Geodesic distance function in ABC is approximated by a linear function interpolating Dg(A) and Dg(B) and satisfying the Eikonal Equation. Dg(C) is computed as solution of a quadratic equation.

Obtuse triangles

Splits the obtuse angle into two acute ones, joining C with any point in the sector between the lines perpendicular to CB and CA. Extend this sector recursively unfolding the adjacent triangles, until a new vertex E is included in the sector. Compute Dg(C) as the distance between C and E on the unfolded triangles plane.
Extensions of FMM

4 extensions

…are necessary to implement some steps of the method for edition of triangulated surfaces…
3.1-Computing a geodesic neighborhood

...stop the advancing front when the geodesic distance reaches a given value

\[d_0 < d_1 < d_2 < d_3 \]
3.2-Computing the geodesic distance for a point which is not a vertex of the triangulation

3 cases depending on the position of the point P: update the list of adjacent points for the vertices of all triangles containing P.
3.3-Stop the advancing front when the geodesic distance has been computed for all points in the target set.

$D_g(P_j, A) = \min_i D_g(P_j, a_i)$

Evolution of FMM

Classic FMM

Modification of FMM

- **Vertices where the geodesic distance has been computed**
- **Vertices in the front**
- **Vertices in the narrow band of the front**

boundary $P = \{P_j\}$

target $A = \{a_i\}$
3.4-Computing the closest vertex

Yellow points are closer to P_1 than to the rest of the boundary points

$$Dg(P, P_0) < Dg(P, P_1) < Dg(P, P_2) < Dg(P, P_3)$$
4-Computing Geodesic curves

Given two consecutive control points A,B on the triangulated surface S... D. Martínez, L. Velho, P. C. Carvalho, 2005

• Compute an initial approximation to the geodesic curve passing through A,B using FMM.

• Correct the initial approximation of the geodesic curve.
Computing the initial approximation to the geodesic curve

\[\text{CG}(AB) = \text{CG}(AC) \cup (CB) \]
Discrete geodesic curvature

\[\theta_r = \sum \alpha_i \quad \theta_l = \sum \beta_i \]

\[\kappa_g(P) = \frac{2\pi}{\theta} \left(\frac{\theta}{2} - \theta_r \right) \]

\[\theta = \theta_l + \theta_r \]
Iterative correction of the polygonal approximation to the geodesic curve

A node P of the current polygonal approximation can be corrected if $\theta_r < \pi$ or $\theta_l < \pi$
Correction

2 Cases

P is a vertex of S

P is in the interior of an edge of S
Correction of the initial approximation

Iterative process

Initial approximation

Correction

Higest geodesic curvature point
Some iterations of the correction process
5-Defining the control curve and the control region

Control curve: a geodesic polygonal curve interpolating a set of given control points

Control region: set of vertices P on the surface such that $D_a(P) < M$
6-Deformation of the control curve

Computing the normal vector at the vertices of the control curve

\[N = \frac{\sum_{i=1}^{n} N_i}{n} \]

\[N = c_1 N_1 + c_2 N_2 \]

\[c_i = \frac{\|P_i - P\|}{\|P_1 - P_2\|}, \quad i = 1, 2 \]
Deformation of the control curve

Parametrizing the control curve by chord length

\[t_{i+1} = t_i + \| P_{i+1} - P_i \| \]

Magnitude of the displacement for a vertex in terms of a cubic B-spline.

New position of \(P_i \) \(\rightarrow \) \(P_i' = P_i + B_3(t_i)N_i \)

Changing the position of the knots to modify the geometry of the B-spline curve
Moving the control curve vertices
Magnitude of the displacement for P in the interest region

\[h(P) = (1 - \frac{Dg(P, Pc)}{\text{dismax}}) \cdot h(Pc) \]

- \(Dg(P, Pc) = 0 \)
 - \(h(P) = h(Pc) \)

- \(Dg(P, Pc) = \text{dismax} \)
 - \(h(P) = (1-1) \cdot h(Pc) = 0 \)
Edition of the control region

- Selected points on the control region
- Points on the boundary of the control region
- Scaled normal vectors at selected points
Edition of the control region
Edition of the control region

(2) (3)
Edition of the control region
8-Implementation

Data structure:
- HalfEdge

Libraries:
- TriangMesh
- OpenGL

User Interface:
- GLUT
- GLUI

Programming Language:
- C++
Options for users

- Modify the geometry of the control curve.
- Selection of the width of the control region.
- Definition of the displacement magnitude.
Conclusions

A new method for editing a triangulated surface S in an intuitive way has been proposed.

Deformations are introduced by means of:

- **control curve**: defined as a piecewise geodesic curve on S interpolating given control points on S.
- **control region**: geodesic neighborhood on S of the control curve.
- **deformations in the control curve**: introduced by means of a cubic B-spline curve.
- **displacements of points in the control region**: in the direction of the normal vectors on S, with magnitude depending on the geodesic distance to the control curve.
Future Work

• To introduce closed curves as control curves.

• Study new deformation patterns for the control curve.

• To improve the computation of the initial approximation to the geodesic curve passing through 2 prescribed points.

• To extend the method to introduce deformations preserving surface details.
References

