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- What is a Foundation Model?

/A

Stanford University
Human-Centered
Artificial Intelligence

In recent years, a new successful paradigm for building Al systems has emerged: Train
one model on a huge amount of data and adapt it to many applications. We call such a

model a foundation model. (CRFM, 2021)

e FE.g.:BERT, GPT, CLIP, DALL-E, Stable Diffusion, Copilot, HLS Geospatial FM
e Capabilities: Language, Vision, Interaction, Robotics, Search and reasoning
e Challenges: sudden faults, biases, lack of understanding and ethics of scale


https://hai.stanford.edu/news/reflections-foundation-models
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Data from diverse sources and types is trained into visual knowledge and after
adapted for a wide variety of tasks, like image segmentation. (CREM, 2022)

What is a Foundation Model?


https://crfm.stanford.edu/assets/report.pdf
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Figure 1: We aim to build a foundation model for segmentation by introducing three interconnected components: a prompt-
able segmentation rask, a segmentation model (SAM) that powers data annotation and enables zero-shot transfer to a range
of tasks via prompt engineering, and a data engine for collecting SA-1B, our dataset of over | billion masks.

Abstract

We introduce the Segment Anything (SA) project: a new
task, model, and dataset for image segmentation. Using our
efficient model in a data collection loop, we built the largest
segmentation dataset to date (by far), with over 1 billion
masks on 11M licensed and privacy respecting images. The
model is designed and trained to be promptable, so it can
transfer zero-shot to new image distributions and tasks. We
evaluate its capabilities on numerous tasks and find that
its zero-shot performance is impressive — often competitive

seasd meewsite YV

wrnth Ay suiemn ePunamar fn neeay felly eveme

matching in some cases) fine-tuned models [ 10, 21]. Empir-
ical trends show this behavior improving with model scale,
dataset size, and total training compute [56, 10, 21, 51].
Foundation models have also been explored in computer
vision, albeit to a lesser extent. Perhaps the most promi-
nent illustration aligns paired text and images from the web.
For example, CLIP [82] and ALIGN [55] use contrastive
learning to train text and image encoders that align the two
modalities. Once trained, engineered text prompts enable
zero-shot generalization to novel visual concepts and data
distributions. Such encoders also compose effectively with




SAM - A Foundation modeld

A step toward the first foundation model for image
segmentation, capable of one-click segmentation of
any object from photos or videos + zero-shot transfer
to other seamentation tasks. (Meta Al, 2023)

The SAM 1 billion mask (SA-1B) dataset is the largest
labeled segmentation dataset to date. It is specifically
designed for the development and evaluation of
advanced segmentation models. (Buhl, 2023)

Segment Anything Model


https://twitter.com/MetaAI/status/1645835862817800193
https://encord.com/blog/segment-anything-model-explained/

Conceptual design

The goal impose main constraints:

1. Support flexible prompts;

2. Compute masks in real-time to
allow interactive use;

3. Must be ambiguity-aware.

Segment Anything Model
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Related tasks

Semantic segmentation

Object
Proposal
Generation

Edge
Detection

Multi-task
Segmentation
System

Panoptic
Segmentation

Dataset
Annotation

(Elharrouss, 2021)

Instance segmentation

Segment Anything Model


https://arxiv.org/abs/2111.10250
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The image encoder
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Visible patches are encoded, mask tokens are
introduced after the encoder, and processed by
a small decoder that reconstructs the original
image in pixels. (He, 2022)

Diving into architecture
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https://openaccess.thecvf.com/content/CVPR2022/papers/He_Masked_Autoencoders_Are_Scalable_Vision_Learners_CVPR_2022_paper.pdf
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Like a Vision Transformer

Split image into fixed-size patches;
Embed each of them with positions;
Feed the resulting sequence to a
standard transformer encoder;

Add an extra learnable token to the
sequence to perform classification.

(Dosovitskiy, 2020)

Diving into architecture
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https://arxiv.org/pdf/2010.11929.pdf

The prompt encoder
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Positional encoder

Diving into architecture
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CLIP

(1) Contrastive pre-training
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http://proceedings.mlr.press/v139/radford21a/radford21a.pdf

The lightweight mask decoder

Diving into architecture

_@_>

/[\

> 4096 (256 vecs)

lightweight
mask decoder

T

i

valid masks

—

g

éi

<

confidence
score

confidence
score

confidence
score

Intersechon
over Union

17



Attention is all you need!
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Diving into architecture 18



https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/2005.12872.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Kuang-Huei_Lee_Stacked_Cross_Attention_ECCV_2018_paper.pdf
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The pre-training algorithm

This simulates a sequence of prompts (e.g., points, boxes, masks) for each training
sample and compare model’s mask predictions against the ground truth.

This is modified from interactive segmentation, the goal is to always predict a
valid mask for any prompt, even when the prompt is ambiguous.

Due to ambiguity, during training, only the minimal losses in the masks are
back-propagated. To classify the masks, the model predicts a confidence score
(i.e., estimated loU) for each mask.

20



Confidence scores

Model pre-training

Mask 86/89

Area: 88553

Pred loU: 1.01
Stability Score: 0.99

21



Use a linear combination of losses

CE — Cross entropy
FL — Focal loss

5
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Model pre-training



How to go beyond existing datasets?

we co-develop our model and dataset annotation in a
loop with three stages:

annotate

=>» Assisted-manual

€ 4.3M masks, 120k images
Model Data
=>» Semi-automatic

€ 10.2M masks, 180k images train

=> Fully automatic Privacy respecting
Licensed images
€ 1B masks, 11M images

Model pre-training
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Computational effort

e SAM isinitialized with pre-trained ViT-H (both, ViT-L and ViT-B, can be used too)

e The training required approx. 100K iterations using the AdamW optimizer, a
linear learning rate warm-up, and a step-wise learning rate decay schedule

e Batchsizeis 256 images, distributed across 256 GPUs, limited to 64 masks/GPU

e Points are sampled uniformly from the ground truth mask. Boxes are taken as the
ground truth mask’s bounding box, with random noise added in each coordinate

e After making a prediction from this first prompt, subsequent points are selected
uniformly from the error region between the previous mask prediction

e Text-to-mask using CLIP, data augmentation and batch size of 128 images

e SAM was trained on 256 A100 for 68 hours (energy cons. is appr. 450 MW)

Model pre-training
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Resulting dataset metrics
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What came next?

e Speedup (FastSAM, MobileSAM, EfficientSAM, EdgeSAM)
e High quality masks (HQ-SAM, Stable-SAM)
e Tracking (TAM, SAM-Track, SAM-PT, HQTrack, FAn, DEVA)

e Annotation (Region captioning, Grounded SAM)
e Geospatial (SAM-DA, Geo SAM, samgeo, SAMRS, SAM-CD)
e SAM 3D (RGB-D, Volumetric medical images, LiDAR to object selection)

26


https://arxiv.org/pdf/2306.12156.pdf
https://arxiv.org/pdf/2306.14289.pdf
https://arxiv.org/pdf/2312.00863.pdf
https://arxiv.org/pdf/2312.06660.pdf
https://arxiv.org/pdf/2306.01567.pdf
https://arxiv.org/pdf/2311.15776.pdf
https://arxiv.org/pdf/2304.11968.pdf
https://arxiv.org/pdf/2305.06558.pdf
https://arxiv.org/pdf/2307.01197.pdf
https://arxiv.org/pdf/2307.13974.pdf
https://arxiv.org/pdf/2308.05737.pdf
https://arxiv.org/pdf/2309.03903.pdf
https://arxiv.org/abs/2312.00869
https://arxiv.org/pdf/2401.14159.pdf
https://arxiv.org/pdf/2307.01024.pdf
https://zenodo.org/records/8191039
https://joss.theoj.org/papers/10.21105/joss.05663
https://arxiv.org/pdf/2305.02034.pdf
https://arxiv.org/pdf/2309.01429.pdf
https://arxiv.org/pdf/2306.03908.pdf
https://arxiv.org/pdf/2309.03493v3.pdf
https://arxiv.org/pdf/2306.02245.pdf
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What came next?
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High quality
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Go to 3D (Anything)

What came next?
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Considerations about work

We note that a foundation model for image segmentation is an
inherently limited scope, since it represents an important, yet
fractional, subset of computer vision;

A central objective is to simplify the interface for composition with
other components, enabling new applications;

The model's performance will be good in general, but less than models
specializing in their own domains.

The community itself
responded very well.

This work received
almost 1.5k citations
in ten months.
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Thanks for your attention!



