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– What is a Foundation Model?

In recent years, a new successful paradigm for building AI systems has emerged: Train 
one model on a huge amount of data and adapt it to many applications. We call such a 
model a foundation model. (CRFM, 2021)

● E.g.: BERT, GPT, CLIP, DALL-E, Stable Diffusion, Copilot, HLS Geospatial FM
● Capabilities: Language, Vision, Interaction, Robotics, Search and reasoning
● Challenges: sudden faults, biases, lack of understanding and ethics of scale
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https://hai.stanford.edu/news/reflections-foundation-models
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Data from diverse sources and types is trained into visual knowledge and after 
adapted for a wide variety of tasks, like image segmentation. (CRFM, 2022)
What is a Foundation Model?

https://crfm.stanford.edu/assets/report.pdf
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SAM ⇾ A Foundation model
A step toward the first foundation model for image 
segmentation, capable of one-click segmentation of 
any object from photos or videos + zero-shot transfer 
to other segmentation tasks. (Meta AI, 2023)

The SAM 1 billion mask (SA-1B) dataset is the largest 
labeled segmentation dataset to date. It is specifically 
designed for the development and evaluation of 
advanced segmentation models. (Buhl, 2023)

7Segment Anything Model

https://twitter.com/MetaAI/status/1645835862817800193
https://encord.com/blog/segment-anything-model-explained/


Conceptual design
The goal impose main constraints:

1. Support flexible prompts;

2. Compute masks in real-time to 
allow interactive use;

3. Must be ambiguity-aware. 

Segment Anything Model 8



Related tasks
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(Elharrouss, 2021)

https://arxiv.org/abs/2111.10250


Architecture overview
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The image encoder

Masked AutoEncoder pre-trained
(High Res. Vision Transformer)

1024x1024

64x64x256

1/16
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A Masked AutoEncoder
Visible patches are encoded, mask tokens are 
introduced after the encoder, and processed by 
a small decoder that reconstructs the original 
image in pixels. (He, 2022)

12Diving into architecture

https://openaccess.thecvf.com/content/CVPR2022/papers/He_Masked_Autoencoders_Are_Scalable_Vision_Learners_CVPR_2022_paper.pdf


Like a Vision Transformer
➔ Split image into fixed-size patches; 
➔ Embed each of them with positions; 
➔ Feed the resulting sequence to a 

standard transformer encoder; 
➔ Add an extra learnable token to the 

sequence to perform classification. 

(Dosovitskiy, 2020)
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https://arxiv.org/pdf/2010.11929.pdf


The prompt encoder

CLIPConv. 
& sum 

Positional 
encodings

64x64x256                                                           Nx256

     256X256

               Dense    Sparse
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Positional encoder
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CLIP

16(Radford, 2021)Diving into architecture

http://proceedings.mlr.press/v139/radford21a/radford21a.pdf


The lightweight mask decoder

Intersection 
over Union

Mod. transformer decoder
& dynamic mask prediction

> 4096 (256 vecs)

17Diving into architecture



Attention is all you need! 
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(Vaswani, 2017) (Carion-Massa, 2020)
Diving into architecture

(Lee, 2018)

https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/2005.12872.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Kuang-Huei_Lee_Stacked_Cross_Attention_ECCV_2018_paper.pdf


Details of this decoder
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The pre-training algorithm 
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● This simulates a sequence of prompts (e.g., points, boxes, masks) for each training 
sample and compare model’s mask predictions against the ground truth.

● This is modified from interactive segmentation, the goal is to always predict a 
valid mask for any prompt, even when the prompt is ambiguous.

● Due to ambiguity, during training, only the minimal losses in the masks are 
back-propagated. To classify the masks, the model predicts a confidence score 
(i.e., estimated IoU) for each mask.



Confidence scores
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Use a linear combination of losses
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CE → Cross entropy
FL → Focal loss

20:1

Model pre-training



How to go beyond existing datasets?
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we co-develop our model and dataset annotation in a 
loop with three stages:

➔ Assisted-manual
◆ 4.3M masks, 120k images

➔ Semi-automatic
◆ 10.2M masks, 180k images

➔ Fully automatic
◆ 1B masks, 11M images

Model Data

annotate

train

Privacy respecting
Licensed images

Model pre-training



Computational effort
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● SAM is initialized with pre-trained ViT-H (both, ViT-L and ViT-B,  can be used too)
● The training required approx. 100K iterations using the AdamW optimizer, a 

linear learning rate warm-up, and a step-wise learning rate decay schedule
● Batch size is 256 images, distributed across 256 GPUs, limited to 64 masks/GPU
● Points are sampled uniformly from the ground truth mask. Boxes are taken as the 

ground truth mask’s bounding box, with random noise added in each coordinate
● After making a prediction from this first prompt, subsequent points are selected 

uniformly from the error region between the previous mask prediction
● Text-to-mask using CLIP, data augmentation and batch size of 128 images
● SAM was trained on 256 A100 for 68 hours (energy cons. is appr. 450 MW)

Model pre-training



Resulting dataset metrics
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What came next?
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● Speedup (FastSAM, MobileSAM, EfficientSAM, EdgeSAM)

● High quality masks (HQ-SAM, Stable-SAM)

● Tracking (TAM, SAM-Track, SAM-PT, HQTrack, FAn, DEVA)

● Annotation (Region captioning, Grounded SAM)

● Geospatial (SAM-DA, Geo SAM, samgeo, SAMRS, SAM-CD)

● SAM 3D (RGB-D, Volumetric medical images, LiDAR to object selection)

https://arxiv.org/pdf/2306.12156.pdf
https://arxiv.org/pdf/2306.14289.pdf
https://arxiv.org/pdf/2312.00863.pdf
https://arxiv.org/pdf/2312.06660.pdf
https://arxiv.org/pdf/2306.01567.pdf
https://arxiv.org/pdf/2311.15776.pdf
https://arxiv.org/pdf/2304.11968.pdf
https://arxiv.org/pdf/2305.06558.pdf
https://arxiv.org/pdf/2307.01197.pdf
https://arxiv.org/pdf/2307.13974.pdf
https://arxiv.org/pdf/2308.05737.pdf
https://arxiv.org/pdf/2309.03903.pdf
https://arxiv.org/abs/2312.00869
https://arxiv.org/pdf/2401.14159.pdf
https://arxiv.org/pdf/2307.01024.pdf
https://zenodo.org/records/8191039
https://joss.theoj.org/papers/10.21105/joss.05663
https://arxiv.org/pdf/2305.02034.pdf
https://arxiv.org/pdf/2309.01429.pdf
https://arxiv.org/pdf/2306.03908.pdf
https://arxiv.org/pdf/2309.03493v3.pdf
https://arxiv.org/pdf/2306.02245.pdf


Speedup
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High quality
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Go to 3D (Anything)

29What came next?



The community itself 
responded very well. 

This work received 
almost 1.5k citations 
in ten months.

Considerations about work
➔ We note that a foundation model for image segmentation is an 

inherently limited scope, since it represents an important, yet 
fractional, subset of computer vision;

➔ A central objective is to simplify the interface for composition with 
other components, enabling new applications;

➔ The model's performance will be good in general, but less than models 
specializing in their own domains.
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Thanks for your attention!


