

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 1

Jean-Pierre Briot

Jean-Pierre.Briot@lip6.fr

Laboratoire d’Informatique de Paris 6 (LIP6)

Université Paris 6 - CNRS

 Laboratório de Engenharia de Software (LES)

PUC-Rio

Agents and Components -
An Experience in Composing Agent Behaviors

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 2

Objectives

• Comparing components and agents

• Independent approaches...

• ...but some common goals for software:
– Composable

– Adaptable

– "Better"

• Considering them within the history/evolution of programming

• What can agents bring to components?
– Semantic coupling vs syntactic coupling

– Autonomy

– Adaptability

• What can components can bring to agents?
– Self-containedness

– Conformance control

– Building blocks

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 3

Outline

• Components

• Agents and Multi-Agent Systems (MAS)

• Evolution of programming

• What agents can bring to components?
– Autonomy/Evolvability

– Assistance to Assemblage
» Ex: The COGENTS project

• What components can bring to agents?
– Self-containedeness

– Architectural support

– macro-level, ex: role/agent conformance control

– micro-level: agent architecture

• Component-based agent architectures

– Various decomposition rationales (levels, modules, behaviors...)

– Ex: behavior decomposition: the MALEVA agent component model

• Conclusion

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 4

• Software components

•

• Inspiration from electronics - Integrated Circuits

• Objective: composition and reuse of software components

• Objective: ease
– Replacement

– Addition

– Removal

 of

– Components

– Connectors

(Software) Components

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 5

Outline

• Components

• Agents and Multi-Agent Systems (MAS)

• Evolution of programming

• What agents can bring to components?
– Autonomy/Evolvability

– Assistance to Assemblage
» Ex: The COGENTS project

• What components can bring to agents?
– Self-containedeness

– Architectural support

– macro-level, ex: role/agent conformance control

– micro-level: agent architecture

• Component-based agent architectures

– Various decomposition rationales (levels, modules, behaviors...)

– Ex: behavior decomposition: the MALEVA agent component model

• Conclusion

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 6

• Limits of direct control/programming approach
– e.g., autonomous space probe, Internet search,

– world-level distributed computing

•

•

• Delegation of mission - Initiative

•

•

• Agents: autonomous entities

• rational, deliberative...

•
–

• Multi-Agent System: distributed interacting agents
– Distributed AI (e.g., RoboCup) VS Traditional AI (e.g., chess)

–

–

• Assistant agent VS single artificial expert (Traditional AI)

Agents and Multi-Agent Systems (MAS) - AI View

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 7

• Limits of direct control/programming approach
– e.g., autonomous space probe, Internet search,

– world-level distributed computing

•

• Delegation of mission - Initiative

•

•

• Agents: autonomous entities/software components
– Reactive or/and proactive (e.g., goal-driven)

–

–

• Knowledge-level coupling vs data-level (typing) coupling

•

•

• Adaptative vs Defensive approach (static verification)

•

•

• Bottom-up (emergent) VS/AND top-down (Architecture Description Languages)
design/organization

Agents and Multi-Agent Systems (MAS) - Software view

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 8

• Autonomous entities
– Reactive or/and proactive (e.g., goal-driven)

–

• Coordination
– Protocols

» coordination, negociation, auction...,

» e.g., Contract Net Protocol/Call for Proposals

– Shared knowledge,
» e.g., joint intentions, exchange of plans…

»

• Organizations
– Division of labor (roles)

– Inter-agent dependencies

– Collective actions

– Regulation (e.g., norms)

–

• Meta-level
– Reasoning about and acting upon

» Action
• Individual

• collective

» Interaction

» Coordination

» Organization

– For control, dynamic adaptation…

Multi-Agent Systems (MAS)

Organisation

Role

Protocol

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 9

Outline

• Components

• Agents and Multi-Agent Systems (MAS)

• Evolution of programming

• What agents can bring to components?
– Autonomy/Evolvability

– Assistance to Assemblage
» Ex: The COGENTS project

• What components can bring to agents?
– Self-containedeness

– Architectural support

– macro-level, ex: role/agent conformance control

– micro-level: agent architecture

• Component-based agent architectures

– Various decomposition rationales (levels, modules, behaviors...)

– Ex: behavior decomposition: the MALEVA agent component model

• Conclusion

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 10

Evolution of programming

Abstraction level

Action selection flexibility
("ever late time binding")

Coupling flexibility

procedure
call

method
call

agent
decision

jump
(goto)

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 11

1st Axis - Action selection

Non modular

external

jump (goto)

external

"Monolithic"
programming

e.g., Fortran

Modular
programming

e.g., Pascal

Object-oriented
programming

e.g., Java

Agent-oriented
programming

e.g., AgentSpeak

Behavior

State

Invocation
(and action selection)

(adapted from [Odell 99])

modular

external

procedure call

external

modular

internal

method call

external

modular

internal

agent decision

(ex: goal-driven)
internal

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 12

Evolution of programming

Abstraction level

Action selection flexibility
("ever late time binding")

Coupling flexibility

procedure
call

method
call

agent
decision

Fortran

modules

objects

actors

components

agents

jump
(goto)

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 13

2nd Axis - Coupling flexibility

 objects components agents

structure
implicit, internal

(object references)
explicit, external

(connectors)

implicit, external

(indexed by
organizational roles)

communication
procedure call

(bidirectional, return
value)

unidirectional
(events) or

bidirectional
protocol

synchronization synchronous
synchronous or
asynchronous

protocol

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 14

Evolution of programming

Abstraction level

Action selection flexibility
("ever late time binding")

Coupling flexibility

bits

data structures

objects, messages

models, ontologies

agents, intentions, plans

Fortran

modules

objects

actors

components

agents

procedure
call

method
call

agent
decision

jump
(goto)

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 15

3rd Axis - Abstraction level

• Agents, not purely data/procedural
• knowledge (beliefs, goals...)

• Semantic/Knowledge-level coupling rather than data-type-level coupling

•

• Communication (e.g., FIPA ACL vs OMG CORBA)

• content language (e.g., KIF, FIPA SL)

• performative (intention of communication, e.g., inform, recruit)

• ontology

• protocol

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 16

Outline

• Components

• Agents and Multi-Agent Systems (MAS)

• Evolution of programming

• What agents can bring to components?
– Autonomy/Evolvability

– Assistance to Assemblage
» Ex: The COGENTS project

• What components can bring to agents?
– Self-containedeness

– Architectural support

– macro-level, ex: role/agent conformance control

– micro-level: agent architecture

• Component-based agent architectures

– Various decomposition rationales (levels, modules, behaviors...)

– Ex: behavior decomposition: the MALEVA agent component model

• Conclusion

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 17

What agents could bring to components ?

• More flexibility for assembling (match-making)

•

• Mechanisms (reorganization) for dynamic reconfiguration

•

• More “intelligent” behavior (intelligent/adaptive cooperative components)

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 18

Example: components match-making

Petrochemical process engineering
(design, simulation, control)

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 19

Initial step: Interoperability:
CAPE-OPEN Project [Braunschweig et al. 02]

• Componentification of Process units
• Interoperability
• Interfaces standards
• OTS Components

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 20

Second step: Assistance to Assemblage:
COGENTS Project [Braunschweig et al. 04]

• Match-making

• Assistance for assemblage

• Instantiation
(actual Software products)

E.g., LARKS matchmaking [Sycara et al. 98]

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 21

Outline

• Components

• Agents and Multi-Agent Systems (MAS)

• Evolution of programming

• What agents can bring to components?
– Autonomy/Evolvability

– Assistance to Assemblage
» Ex: The COGENTS project

• What components can bring to agents?
– Self-containedeness

– Architectural support

– macro-level, ex: role/agent conformance control

– micro-level: agent architecture

• Component-based agent architectures

– Various decomposition rationales (levels, modules, behaviors...)

– Ex: behavior decomposition: the MALEVA agent component model

• Conclusion

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 22

"Self-containedness"

• Includes all the code

• "Ready to use"

• “Ready to deploy”

• Includes documentation

object

class

component

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 23

organization

role

Architectural support

agent

• At the macro / system / organizational level

• At the micro / (single) agent level

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 24

System level architecture

• Software architectures (and components)
– explicit

– rational

– explicit coupling

• data-level (interfaces, typing)

• communication-level (connectors)

• Agent organizations (cognitive)
– explicit

– rational

– semantic/knowledge coupling

– reified

– evolutive (reorganization)

• Agent organizations (reactive)
• bottom up / emergent (e.g., ant societies)

– and conformant / top-down ([Cardon 99])

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 25

Conformance of an agent to a role

organization

role

agent

How can we make sure (or estimate)
that an agent may (or will be able to)
fulfill a role ?

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 26

Checking the conformance of an agent to a role

• Role
– place holder
– requirements / capabilities

» structure
• procedures

• knowledge

• coordination

• physical (e.g., for locomotion)

» activity
• behavior

• coordination

• regulation

•

• Conformance problem
– static

» procedures signatures / typing

» contracts

» compatibility with other roles already acquired (MOISE+ [Hübner et al. 02])

– dynamic

» possible dynamic acquisition (procedures, knowledge, protocols)

» integration test [Rodrigues 05]

» deontic specification (MOISE+ [Hübner et al. 02])

» monitoring/evaluation mechanims

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 27

Outline

• Components

• Agents and Multi-Agent Systems (MAS)

• Evolution of programming

• What agents can bring to components?
– Autonomy/Evolvability

– Assistance to Assemblage
» Ex: The COGENTS project

• What components can bring to agents?
– Self-containedeness

– Architectural support

– macro-level, ex: role/agent conformance control

– micro-level: agent architecture

• Component-based agent architectures

– Various decomposition rationales (levels, modules, behaviors...)

– Ex: behavior decomposition: the MALEVA agent component model

• Conclusion

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 28

Architectural support for an agent (agent level)

• Central issue: action selection (as for robots)

• More complex than for objects/components:
– not just procedural (e.g., reasoning)

– various inputs (environnement, communication...)

– pro-activity (vs simple reactivity)

– various levels (self, agents, organization)

– knowledge (vs data)

• Architecture of an agent:
•

– the software structure in charge of that action selection
–
– functions of the agent and their interactions

perception

message

coordination

Ø

state update (knowledge & data)

communication

coordination

action (environment)

agent

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 29

Rationale (tentative typology)
for (one) agent architectural decomposition

• Analog to software achitectural styles (layers, pipes&filters...)

• (computational) Cycle
– e.g., perception, mental state update, generating commitments, action

» e.g., AOP architecture

• Viewpoints and types of processing
– e.g., interaction, organization, environment

» e.g., Volcano architecture

• Levels
– e.g., world level, individual level, social level

» e.g., InteRRaP architecture

• Behaviors
– e.g., gradient following, obstacle avoidance, random move...

» e.g., subsumption architecture

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 30

Cycle decomposition:
“Horizontal” modular architectures

• one layer

• decision/action cycle

perception commitments
generation

actionmental states
update

environment

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 31

Ex. of Cycle decomposition:
AOP (Agent Oriented Programming) Architecture

[Shoham 93]

data-driven

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 32

Ex. of Viewpoint decomposition: Vulcano [Ricordel 02]

• Vowels decomposition model [Demazeau 01]:

• A(gent)

• E(nvironnement)

• I(nteraction)

• O(rganization)

•

• Interfacing wrappers/adapters

 (ad-hoc)

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 33

MAST [Vercouter 04]

• provided roles and required roles
• sent events and handled events
• delegation
• priority

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 34

DESIRE [Brazier et al. 95-01]

• formal specification

•

• Generic Agent Model (GAM)

•

• retro-engineering of some architectures

• (e.g., BDI) and applications (e.g., ARCHON)

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 35

Modules decomposition,
Ex: DIMA architecture [Guessoum 99])

ATNATNMeta level

Adaptative control

fire a rule

MetaRules
Control

Objects

Rules

Deliberative Module

Reactive Module Reactive Module

Behavior level

ATN = Augmented Transition Network (automata)

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 36

Ex. of Level decomposition:
InteRRap [Müller 94]

• 3 levels/layers activated in //
– behavior - beliefs about the state of the environment

– local planning - beliefs about oneself

– cooperative planning - beliefs about and commitments with other agents

social model

mental model

world model

situation recognition

and goal activation
planning and
scheduling

situation recognition
and goal activation

planning and

scheduling

situation recognition
and goal activation

planning and

scheduling

perception communication action

cooperative
planning

local
planning

behavior

downwards

activation

requests

upwards
commitment

signals

knowledge
base

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 37

• components activated in parallel

• competitive and hierarchical

• priorities and inhibitions:
– taking over input of lower component

– inhibiting output of lower component
–

• hard-wired

Ex. of Behavior decomposition:
Subsumption architecture [Brooks 86]

obstacle avoidance

gradient following

exploratory movement

home return

random movement

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 38

Other: Evolvable architectures [Meyer et al. 98]

Modular design/construction:

Black network : walk
Red network : obstacle avoidanceinfra-red

sensors

leg
actuators

Genetic programming

Evolution of the development
program

instructions:
DIVIDE, GROW, DRAW...

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 39

Reuse of architectural components

• Cycle
– e.g., AOP

– only little decomposition

– often only conceptual, no implementation decoupling

• Viewpoints
– e.g., Volcano

– replacing a brick -> replace the adaptors

• Levels
– e.g., InteRRaP

– often only conceptual, no implementation decoupling

• Behaviors
– e.g., Subsumption architecture

– hard-wired

– very difficult to evolve

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 40

Architectural model versus Component model

• Existence of an architecture restrains the possible combination of
components

– cons: constraints

– pros: constraints ! (structure)

» Reuse of (stable) architecture is more easy

» Cf. Frameworks - “Is reusable only what has already been reused” [Johnson]

• But difficult to evolve the architecture itself (e.g., add a component)

Radical option:

• No more architecture

• Just a component model (like ex: JavaBeans)

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 41

Rationale for agent architectural decomposition (2)

• Tools/techniques
– e.g., backpropagation, bayesian, time series, rules...

» e.g., ABLE architecture

• Protocol components
– e.g., Agentalk, SCD

• Behaviors
– e.g., gradient following, obstacle avoidance, random move...

» e.g., MALEVA component architecture

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 42

Tools (tool box) decomposition,
ex: ABLE architecture [Bigus et al. 02]

Java Beans-based implementation

IBM Autonomic computing programme

E.g., rule beans

• Data beans
e.g., TimesSeriesFilter

• Learning beans
e.g., BackPropagation

• Rule beans
e.g., FuzzyForwardChaining

• Specific beans
e.g., GenericSearch

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 43

Reusing protocol components

• Extensions of the Contract Net Protocol (CNP)

• Agentalk [Kuwabara et al. 95]
– inheritance (e.g., directed-award-CNP)

– customization interface

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 44

Reusing protocol components

• SCD [Yoo et al. 98]
– inheritance (e.g., time-out-CNP)

– composition (e.g., iterated-CNP)

Contr_Manager
Contr_Bidder

RendezVous

Selector

cfp (condt)
cfp (condt)

SelectService(bidList) :
(agent, award)

propose

(bidList) propose
(bid)

accept-
proposal
(award)

accept-proposal
 (agent, award)

HasService(condt):
boolean

MakeBid (condt):
bid

BeginService
(award)

beginContract
(condt)

port de message en sortie
ajouté

added output
message port

Manager

Contractant

RendezVous

Selector

cfp (condt)
cfp (condt)

SelectService(bidList) :
(agent, award)

propose

(bidList) propose
(bid)

accept-
proposal
(award)

accept-proposal
 (agent, award)

HasService(condt):
boolean

MakeBid (condt):
bid

BeginService
(award)

beginContract
(condt)

beginReproposal

beginContract
(condt)

make_reproposal

new_proposal (condt)

nouveau composant

rajouté au

composant existant

(la partie manager du

protocole d'appel

d'offre)

vers un
compo-

sant
interne

new component
managing iteration

of proposal

• also XMLaw [Carvalho et al. 04]

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 45

The MALEVA agent component model [Lhuillier et al. 98]

• Domain: multi-agent simulation
– e.g., trafic simulation, eco-systems, population micro-simulation...

• Unit of decomposition: agent behavior

• Assembling behaviors into more complex behaviors
– concept of composite component (behavior)

• Supports behavior dynamic change
– e.g., from an egg, to a larva, to a worker ant

• Distinction between
– data flow

– control flow

• JavaBeans-based (re)implementation

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 46

General agent architecture

Sub-behaviors

Connexions

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 47

Data flow and control flow: ports and connexions

Sequence

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 48

Concurrency

Data flow and control flow: ports and connexions

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 49

A first example: Prey

• if the Prey detects a Predator, it flees away

• otherwise, it moves randomly

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 50

Control components

• dispatch of control flow

• Switch
– reifies in a component

– traditional conditional control structure

– (if then else)

–

•

•

•

• other control components:

•
– control structures

» e.g., Repeat

– synchronization

» e.g., Sync (synchronization barrier)

Switch

data input port

output data port

Then output control port

Else output control port

Then

Else

If

control input port

if input data

 then transfer control to Then control port
 and transmit data to Then data port

 else transfer control to Else control port

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 51

• if the Predator detects a prey, it follows the prey

• otherwise, it acts as a Prey (cannibalism among Predators)

Reuse of a Prey: Predator

Prey is reused as a black box

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 52

• Two kinds of composition:

Importance of composite component

functional composition
(assemblage)

Prey

Switch

Random

Move

Flee

Predator

Switch

Follow

structural composition
(composite component,

information hiding, black box)

Prey

Switch

Random

Move

Flee

Predator

Switch

Follow

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 53

2nd Example: Ant Nests Simulation

• Reingineering of MANTA simulation testbed [Drogoul 93]

• Redesign/construction of ant behaviors using MALEVA [Guillemet et al. 98]

ants (workers)
larvae
eggs
queen

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 54

Ex. of hierarchical behavior: Ant Worker

Living agent (pattern)

Defaut random move (pattern)

Following gradient

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 55

Dynamicity (dynamic change of behavior)

• e.g., egg -> larva -> ant

• behavior server meta-component
– set up future behavior

– check what components to keep, to add, to remove

– install connexions

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 56

Advantages of explicit control flow

• decoupling activation logic from functionality

• more genericity

• fine grain control of intra-agent scheduling

 (specification of temporal depencies)

 see next example/slides

A B A B

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 57

3rd Example: population reproduction/evolution

Mating

Birth

Divorce

getMarried newBaby divorce

3 behaviors/components
(probabilistic state change):

Issue for the designer of the model/simulation:
(Note: often not an expert programmer)

in what order should we activate these behaviors ?

Simplification of demography
micro-simulation model Destinie [INS 99]

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 58

Impact: Scheduling bias

Number of babies

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 59

Specification of intra-agent temporal dependencies
[Meurisse 04]

getMarried ; Divorce ; NewBaby getMarried ; NewBaby ; Divorce getMarried || Divorce || NewBaby

Number of babies

Possible scheduling bias
on number of babies

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 60

Reingineering of existing behavioral code [Meurisse 04]

- a Java class (name)
- a method (name)
- method signature
 e.g., position Follow(position p)

Follow

CGraphGen tool

- typed ports

- one FIFO for
 each data input port

data

control

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 61

• E.g., “Living Agent” (ageing agent) pattern
– used for egg,

– larva,

– ant worker,

– queen...

• Actually, we offer more

• than just a design pattern:

• a black box micro-framework - parameterized component
– with (in this case) one hot-spot (Behavior)

Reuse: Design Patterns [Guillemet et al. 99]

Maturing

Behavior

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 62

From control flow graph to process algebra term

isPrey.Follow || isPredator.Flee || (isNoPrey.RandomMove + isNoPredator.RandomMove)

Even with the hierarchy of components
(composite components), which helps at
encapsulate some complexity of the control
flow graph, specifying it is precise but low
level

An alternative direction could then be in
using a formalism (coordination language),
to specify control coordination language (a
very fine grained one)

Process algebra, e.g., CCS

Pi-calculus to handle dynamicity

a compact term

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 63

Outline

• Components

• Agents and Multi-Agent Systems (MAS)

• Evolution of programming

• What agents can bring to components?
– Autonomy/Evolvability

– Assistance to Assemblage
» Ex: The COGENTS project

• What components can bring to agents?
– Self-containedeness

– Architectural support

– macro-level, ex: role/agent conformance control

– micro-level: agent architecture

• Component-based agent architectures

– Various decomposition rationales (levels, modules, behaviors...)

– Ex: behavior decomposition: the MALEVA agent component model

• Conclusion

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 64

Conclusion on MALEVA

• components can be useful to help at decomposing/recomposing agent
architectures

• fine grained (behaviors)
– but optimizations possible

• composite components hierarchy

• dynamic change of behaviors

• data flow and control flow for decoupling activation from functionality

• typed ports

• libraries of
– behaviors

– parameterized behaviors (e.g., ageing agent)

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 65

General Conclusion (Components & Agents)

• Dual movement:
– Distributed systems/applications are getting more adaptable/dynamic

» dynamic reconfiguration

» more semantic support

» e.g., GRID and MAS: “Brain meets brawn” [Foster et al. 03]

– Agents and multi-agent systems have greater software maturity

» deployment

» configuration

» life cycle

• Reuse is difficult (no free lunch)
– components

– but also:

» inheritance, parameterization, frameworks, delegation

» reflective architectures, aspects [Garcia et al. 04], meta-models [Silva et al. 04]...

• Alternative to distributed components: Web services
– simpler infrastructure (e.g., vs Corba Component Model)

» e.g., Web-service-based MAS interoperability [Melliti et al. 04]

Seminário de pesquisa LES/DI/PUC-Rio 25/11/05 Jean-Pierre Briot 66

Perguntas ?

