Towards an efficient representation using sinusoidal neural networks

by Diana Aldana Moreno

> Impa 2024

Implicit neural representations (INR)

- Neural fields and beyond website
- Awesome implicit representations Github
- Google scholar
- etc...

Regression problem

Ground truth f

- Discrete representation
- Grid dependant

- Understanding of f_{θ}
- Initialization:
 - First layer
 - Hidden layer

Bound the reconstruction's spectrum

Intensity indicates amplitude of frequency (i, j)

Why sinusoidal INRs?

Fast convergence, highly detailed

Stochastic / stratified sampling

Higher dimension representations

Compatible with different pipelines.

Sitzmann, Vincent, et al. "Implicit neural representations with periodic activation functions." Advances in neural information processing systems 33 (2020): 7462-7473. Novello, Tiago, et al. "Neural Implicit Surface Evolution." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023. Schardong, Guilherme, et al. "Neural Implicit Morphing of Face Images." Proceedings of the IEEE / CVF Computer Vision and Pattern Recognition Conference. 2024.

Goals

- Understand the training of sinusoidal INRs
- Control the generated frequencies (noise)
- Find an adequate size for f_{θ}
- Speed up training

m? n? $m \gg n?$ $n \gg m?$

Sinusoidal INR's structure

Novello, Tiago. "Understanding sinusoidal neural networks." arXiv preprint arXiv:2212.01833 (2022).

Initialization

Ours

Generated frequencies $\beta_{\mathbf{k}}(\boldsymbol{\omega}) = \sum_{j=1}^{m} k_j \omega_j$ with k_1, \dots, k_m integers.

$$\omega = \frac{2\pi}{p} \mathfrak{f} \longrightarrow \beta_k(\omega) = \frac{2\pi}{p} k \mathfrak{f}$$

Nyquist limit 512

$$\sin(\omega \mathbf{x} + \varphi) = \sin(\omega \mathbf{x}) \cos(\varphi) + \sin(\varphi) \cos(\omega \mathbf{x})$$
$$= \left[\sin(\omega_j \mathbf{x} + \varphi_j)\right]_j$$
$$-\sin\left(-\omega \mathbf{x} + \frac{\pi}{2}\right)$$

Linear combination of sines with frequencies ω_i and $-\omega_i$.

Choose ω , $-\omega$ or choose $\omega, \tilde{\omega}$?

 $D(\mathbf{x})$

Generated frequencies $\beta_{\mathbf{k}}(\omega) = k_1 \omega_1 + \ldots + k_m \omega_m$ have low amplitudes for $\|\mathbf{k}\|_{\infty} \ge 5$

step=10

step=100

Generated frequencies $\beta_{\mathbf{k}}(\omega) = k_1 \omega_1 + \ldots + k_m \omega_m$ have low amplitudes for $\|\mathbf{k}\|_{\infty} \ge 5$

Maximum frequency of 85

Uniform PSNR: 33.07

Our initialization PSNR: 35.52

Generated frequencies $\beta_{\mathbf{k}}(\boldsymbol{\omega}) = k_1 \boldsymbol{\omega}_1 + \ldots + k_m \boldsymbol{\omega}_m$ with amplitudes $\alpha_{\mathbf{k}}(\mathbf{W}_i)$

- If ||₩_i||_∞ ≤ 2 the amplitudes decrease at least exponentially with respect to ||k||_∞
- SIREN initialization satisfies this equation (for m>6)

Generated frequencies $\beta_{\mathbf{k}}(\omega) = k_1 \omega_1 + \ldots + k_m \omega_m$ with amplitudes $\alpha_{\mathbf{k}}(\mathbf{W}_i)$

Novello, Tiago. "Understanding sinusoidal neural networks." arXiv preprint arXiv:2212.01833 (2022).

SIREN

Pruning

- $\mathscr{L}_{reg} = \|\mathbf{W}\|_1$
- Softening of the function
- Reduces values that are not as informative

 $\alpha = 0.00001$

 $\alpha=0.0000001$

W

 $\boldsymbol{\omega} \text{ are fixed during training}$ $D(\mathbf{x}) = \left[\sin(\boldsymbol{\omega}_j \mathbf{x} + \boldsymbol{\varphi}_j)\right]_j + \sin(\boldsymbol{\omega}_{m+1} \mathbf{x} + \boldsymbol{\varphi}_{m+1}) - \sin(\boldsymbol{\omega}_j \mathbf{x} + \boldsymbol{\varphi}_j)$

PINAL architecture PSNR: 30.18

Add-prune scheme PSNR: 29.55

Questions?