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The graphics pipeline
• Scene representation. 

- Mesh, volume, implicits, …

- Domain in .ℝ3

• Rendering. 
- Rasterization, ray tracing, 

volume ray casting.

p Image plane

Geometry processing Image processing

• Rendered images. 

I : ℝ2 → 𝒞



The neural graphics pipeline
• Dif scene representation. 

- Mesh, volume, implicits, …

- Domain in .ℝ3

• Rendered images. • Dif rendering. 
- Rasterization, ray tracing, 

volume ray casting.

p Image plane

Geometry processing Image processing

I : ℝ2 → 𝒞



• Problem: Represent a graphical object 

using a neural network .


-  


-  


• A INR is a network  where its parameters 

 are implicitly defined by


-

f : ℝn → ℝp

f(x) = Wd ∘ fd−1 ∘ ⋯ ∘ f0(x) + bd

fi(x) = sin(Wix + bi)

f

θ

ℒ(θ) = ℒdata(θ) + ℛ(θ) = 0

Implicit neural representations in CG

Image: 
I : ℝ2 → 𝒞

Implicit surface: g : ℝ3 → ℝ

g > 0

g < 0
g−1(0)

Image morphing:  
f : ℝ2 × [0,1] → 𝒞

Surface evolution: f : ℝ3 × [0,1] → ℝ

Schirmer et al. Neural Networks for Implicit Representations of 3D Scenes. SIBGRAPI. 2021.
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The INR pipeline

Sample  of an 

object .

{xi, fi}

f : ℝn → ℝp

Input data

x1 x2 x3 x4 x5

f(x) = y

f : ℝn → ℝp

Smooth neural network

Neural object  .

• Smooth.

• Analytical derivatives.

f : ℝn → ℝp

f(x) = y

Inference

Forces  to fit a given property.

• Solution of a PDE.

f

Implicit regularization

 Loss function 

  ℒ(θ) = ∑ (f(xi) − fi)2 + ℛ(θ)

Stochastic gradient descent

Training

Sampling

Initialization of θ

Data term



Related works

• Implicit neural representations, 
coordinate-based networks,      
neural fields, and neural implicits.


- [Mescheder et al. 2018, Occupancy Net]

- [Park et al. 2018, DeepSDF]

- [Sitzmann at al. 2019, SIREN]

- [Gropp et al. 2019, IGR]

- [Mildenhall et al. 2020, NeRF] 

- …

• Neural PDE solvers (PINNs).

- [Sirignano et al. 2018, DGM]

- [Raissi et al. 2019, PINNs] 

- …

• Sinusoidal INRs.

- [Parascandolo et al. 2016, Taming]

- [Sitzmann at al. 2019, SIREN] 

- …



Projects…
Exploring Differential 

Geometry in Neural Implicits
Neural Implicit Surface Evolution 

using Differential Equations
Neural implicit mapping 

via nested neighborhoods

Neural flows Taming the sinusoidal INRsPeriodic textures

3D scene reconstruction

Multiresolution sinusoidal INRs
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Projects…
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Surfaces as level sets of INRs

Sample  of a surface .
{pi, Ni} S

Find a minimum of  
using gradient descent.

ℒ

 Loss function 
? 
 

Training
Sampling

•  is smooth.

• Normals/curvatures in closed form.


S ≈ g−1(0)

Novello et al. Exploring differential geometry in neural implicits. Computers & Graphics, 2022.

g : ℝ3 → ℝ

Smooth neural network

?

Regularization

Data Rendering



Implicit shapes

f > 0

f < 0

f = 0
• Problem: Represent a surface  implicitly.


• Find a function  such that:


•  if  is on . 

•  if  is outside . 

•  if  is inside .  


• Thus, 


• Many options for 

S

f

f(x) = 0 x S

f(x) > 0 x S

f(x) < 0 x S

S = {x | f(x) = 0}

f



Implicit shapes

• The signed distance function (SDF)  of  is an 

important example of implicit function:


•   measures the distance of each point  to :


•  if  is on  

•  if  is outside  

•  if  is inside  

f S

f(x) x S

f(x) = 0 x S

f(x) > 0 x S

f(x) < 0 x S

p



Implicit shapes

• Implicit function theorem: 

• For  to be a surface in a neighborhood 

of a point  we need .

f −1(0)

x ∇f(x) ≠ 0

x

∇f(x) ≠ 0



Signed distance function

• A function  fits the SDF of  if it 
satisfies the Eikonal eq.





• Which implies that .


• We use these constraints to define the loss 
functional.

g : Ω → ℝ S

{ |∇g | = 1 in Ω,
g = 0  on S .

∂g
∂N

= ⟨∇g, N⟩ = 1
x



Signed distance function
• A function  fits the SDF of  if it 

satisfies the Eikonal eq.





• Which implies that .


• We use these constraints to define the loss 
functional.


• In practice, we have a sample 

g : Ω → ℝ S

{ |∇g | = 1 in Ω,
g = 0  on S .

∂g
∂N

= ⟨∇g, N⟩ = 1

{xi, Ni}

S xi

Ni
∇g(xi)

 α



Surfaces as level sets of INRs

Sample  of a surface .
{pi, Ni} S

Find a minimum of  
using gradient descent.

ℒ

 Loss function 
? 
 

Training
Sampling

•  is smooth.

• Normals/curvatures in closed form.


S ≈ g−1(0)

Novello et al. Exploring differential geometry in neural implicits. Computers & Graphics, 2022.

g : ℝ3 → ℝ

Smooth neural network

?

Regularization

Data Rendering



Surfaces as level sets of INRs

Sample  of a surface .
{pi, Ni} S

Find a minimum of  
using gradient descent.

ℒ

 Loss function 
? 
 

Training
Sampling

•  is smooth.

• Normals/curvatures in closed form.


S ≈ g−1(0)

Novello et al. Exploring differential geometry in neural implicits. Computers & Graphics, 2022.

g : ℝ3 → ℝ

Smooth neural network Regularization

Data Rendering

Forces  to be a SDF.
f

{ℱ = |∇g | − 1 = 0 in Ω,
g = 0  on S



Surfaces as level sets of INRs

Sample  of a surface .
{pi, Ni} S

Find a minimum of  
using gradient descent.

ℒ

 Loss function 

 

 

ℒ(θ)= ∑g(pi)2 + (1−⟨∇g, Ni⟩)
data term

+ ∫Ω
ℱ2dx

Eikonal term

Training
Sampling

•  is smooth.

• Normals/curvatures in closed form.


S ≈ g−1(0)

Novello et al. Exploring differential geometry in neural implicits. Computers & Graphics, 2022.

g : ℝ3 → ℝ

Smooth neural network

Forces  to be a SDF.
f

{ℱ = |∇g | − 1 = 0 in Ω,
g = 0  on S

Regularization

Data Rendering



Max curvature Min curvature

Curvatures

Gaussian curvature

Mean curvature

Schirmer et al. How to train your (neural) dragon. SIBGRAPI. 2023.



Max curvature Min curvature

Gaussian curvature Mean curvature

Future works: 


• Compute ridges (depends on the third derivative).


• Geodesics (also explore NN to model surface 

parametrizations).

Curvatures



• Problem: Real-time rendering of (neural) 
level sets using sphere tracing.


★The intersection between  
and  is approximated by iterating:


-

γ(t) = x0 + tv
f −1(0)

pi+1 = pi + f(pi)v

Silva et al. Neural Implicit Mapping via Nested Neighborhoods. arXiv. 2022.

x0 v

f −1(0)

f(x0)

Close to the 
intersection point!

x1

Rendering



• Problem: Real-time rendering of (neural) 
level sets using sphere tracing.


• Idea: Use coarser networks in the early 
iterations of the algorithm.


• We need the existence of a nested sequence 
of zero-level sets neighborhood.

Silva et al. Neural Implicit Mapping via Nested Neighborhoods. arXiv. 2022.

Rendering



Evolving the level sets of INRs
Interpolation

SmoothingDeformation

PDE solution



t = 0

Evolving the level sets of INRs

Find a minimum of  
using gradient descent.

ℒ
Training

Sampling

f : ℝ3 × ℝ → ℝ

Smooth neural network
Regularization

Input data Rendering

Trained INR .
g : ℝ3 → ℝ •  is smooth both in space and time.f −1
t (0)

Novello et al. Neural Implicit Surface Evolution. ICCV. 2023.

 Loss function 
? 
 

?



t = 0 Loss function 

 

 

ℒ( f )=∫Ω×{0}
( f−g)2dx

data term

+∫Ω×(a,b)
ℱ2dxdt

PDE term

Evolving the level sets of INRs

Find a minimum of  
using gradient descent.

ℒ
Training

Sampling

f : ℝ3 × ℝ → ℝ

Smooth neural network
Differential equation


{ℱ = 0 in Ω × (a, b),
f = g  on Ω × {0} .

Regularization

Input data Rendering

Trained INR .
g : ℝ3 → ℝ •  is smooth both in space and time.f −1
t (0)

Novello et al. Neural Implicit Surface Evolution. ICCV. 2023.



t = 0 Loss function 

 

 

ℒ( f )=∫Ω×{0}
( f−g)2dx

data term

+∫Ω×(a,b)
ℱ2dxdt

PDE term

Evolving the level sets of INRs

Find a minimum of  
using gradient descent.

ℒ
Training

Sampling

f : ℝ3 × ℝ → ℝ

Smooth neural network Level set equation 

{ℱ = ∂f
∂t + v |∇f | = 0 in Ω × (a, b),

f = g  on Ω × {0} .

Regularization

Input data Rendering

Trained INR .
g : ℝ3 → ℝ •  is smooth both in space and time.f −1
t (0)

Novello et al. Neural Implicit Surface Evolution. ICCV. 2023.



Evolving the level sets of neural networks

t = 0 t > 0t < 0

t = 0

Mean curvature equation

Future works: 


• Relate it with MR neural networks to 

use to accelerate rendering.

t = 0t < 0 t > 0

We blend the sink 
and source VFs 
using gaussians.

Deformation driven by vector 

Future works: 


• Disentangle the surfaces from the deformation .T : ℝ3 × ℝ → ℝ3

Interpolation between implicit surfaces 




Disentangle deformation from the object
• Problem: the INR  has to learn 

a deformation of  at each time .


• Proposal: represent such deformations by 

another INR .


• 


• Consider T to be a flow:


- , and . 


‣

f : ℝn × ℝ → ℝ
g = f(⋅,0) t

T : ℝn × ℝ → ℝn

f(x, t) = g ∘ T−1(x, t)

T(x,0) = x T(T(x, s), t) = T(x, t + s)

T−1(x, t) = T(x, − t)

t = 0 t > 0

g = f(⋅,0) f( ⋅ , t)

T(x, t)



Morphing   
f : ℝ2 × [0,1] → 𝒞

Morphing of objects

  
I0 : ℝ2 → 𝒞
  
I1 : ℝ2 → 𝒞

I0(T(x, − t)) I1(T(x,1 − t))
Schardong et al. Neural implicit morphing of face images. CVPR. 2024.

• Problem: morphing between two images .


• Train a flow  to align the features.

Ii : ℝ2 → 𝒞
T : ℝ2 × ℝ → ℝ2



Feature alignment along time

Schardong et al. Neural implicit morphing of face images. CVPR. 2024.



Blending using diffusion models

Schardong et al. Neural implicit morphing of face images. CVPR. 2024.

[Ours]

[diffAE]



Faces of different ethnicities and genders

Schardong et al. Neural implicit morphing of face images. CVPR. 2024.



Morphing of objects

  
I0 : ℝ2 → 𝒞
  
I1 : ℝ2 → 𝒞

I0(T(x, − t)) I1(T(x,1 − t))

Future works:

● Morphing between surfaces.

• Problem: morphing between two images .


• Train a flow  to align the features.

Ii : ℝ2 → 𝒞
T : ℝ2 × ℝ → ℝ2



Sinusoidal INRs



●  h(x) = sin (
n

∑
i=1

ai sin(ωix + φi) + b)
Sinusoidal neuron

sin(ω1x + φ1)

sin(ω2x + φ2)

sin(ωnx + φn)

⋮
z =

n

∑
i=1

ai sin(ωix + φi) + b sin(z)

ActivationLinear combination

Input neurons



Multiresolution Neural Networks for Imaging

Sum of sinusoidal nets 
gi : ℝ2 → ℝ

f = g1 + g2 + g3

Level 1Level 2Level 3

Fit each level  
to 

m
g1 + ⋯ + gm

Training

g1 + g2 + g3 g1 + g2

Input Output

Paz et al. MR-Net: Multiresolution sinusoidal neural networks. Computers & Graphics. 2023.
Paz et al. Multiresolution neural networks for imaging. SIBGRAPI. 2022. Anti-aliasing

Data in multiresolution

g1



Multiresolution Neural Networks for Imaging

Sum of sinusoidal nets 
gi : ℝ2 → ℝ

f = g1 + g2 + g3

Level 1Level 2Level 3

Fit each level  
to 

m
g1 + ⋯ + gm

Training

Data in multiresolution

g1 + g2 + g3 g1 + g2

Input Output

Paz et al. MR-Net: Multiresolution sinusoidal neural networks. Computers & Graphics. 2023.
Paz et al. Multiresolution neural networks for imaging. SIBGRAPI. 2022.

Work in progress:

● Curves and surfaces in multiresolution 

(using the mean curvature equation).

g1



● Sinusoidal neuron . 


• If the input neurons are periodic with period , the neuron  is periodic with period .  

- Texture representation.

h(x) = sin (
n

∑
i=1

ai sin(ωix + φi) + b) = ∑
k∈ℤn

αk(a)sin(⟨k, ωx + φ⟩ + b)
P h P

Periodic networks (Work in progress)

Sinusoidal INR Periodic INR

Future works:

● Represent panoramic images.


● Closed curves.


● Surfaces having the topology .𝕊1 × 𝕊1

Paz et al. Implicit Neural Representation of Tileable Material Textures. arXiv. 2024

Novello. Understanding Sinusoidal Neural Networks. arXiv, 2023.



Back to the graphics pipeline
• Dif scene representation. 

- Mesh, volume, implicits…

- Domain in ℝ3

• Rendered images. • Dif rendering. 
- Rasterization, ray tracing, 

volume ray casting.

p Image plane

[i3D, i4D, taming]

I : ℝ2 → 𝒞

mipplicitsmipplicits

[MRnet, morph, texture, taming]

3D rec. 3D rec.



Obrigado!



Understanding Sinusoidal 
Neural Networks



● Sinusoidal neuron  


● We can prove that  with 


●  are the Bessel functions of the first 

h(x) = sin (
n

∑
i=1

ai sin(ωix + φi) + b)

h(x) = ∑
k∈ℤn

αk(a)sin(⟨k, ωx + φ⟩ + b) αk(a) =
n

∏
i=1

Jki
(ai)

Jki
(ai) = ∫

π

0
cos(kit − ai sin(t))dt

A trigonometric identity…

sin(ω1x + φ1)

sin(ω2x + φ2)

sin(ωnx + φn)

⋮
z =

n

∑
i=1

ai sin(ωix + φi) + b sin(z)

ActivationLinear combination

Input neurons

Novello. Understanding Sinusoidal Neural Networks. arXiv, 2023.



● Sinusoidal neuron  


● The sinusoidal neural is producing a large number of new frequencies ;


- We prove that amplitudes  are bounded by ;


- Controlling the frequency band of the network during training (Diana Aldana’s Thesis)

h(x) = sin (
n

∑
i=1

ai sin(ωix + φi) + b) = ∑
k∈ℤn

αk(a)sin(⟨k, ωx + φ⟩ + b)
⟨k, ω⟩

αk(a)
n

∏
i=1

( |ai |

2 )
|ki|

|ki | !

Some consequences…


