Implicit Neural Representations

Tiago Novello

The graphics pipeline

Scene representation.

- Mesh, volume, implicits, ...
- Domain in \mathbb{R}^3 .

- Rendering.
 - Rasterization, ray tracing, volume ray casting.

Rendered images.

The neural graphics pipeline

• **Diff scene representation.**

- Mesh, volume, implicits, ...
- Domain in \mathbb{R}^3 .

- Diff rendering.
 - Rasterization, ray tracing, volume ray casting.

Rendered images.

$I: \mathbb{R}^2 \to \mathscr{C}$

Image plane

Implicit neural representations in CG

• **Problem:** Represent a graphical object using a neural network $f : \mathbb{R}^n \to \mathbb{R}^p$.

$$- f(x) = W_d \circ f_{d-1} \circ \cdots \circ f_0(x) + b_d$$

$$- f_i(x) = \sin(W_i x + b_i)$$

• A **INR** is a network *f* where its parameters θ are implicitly defined by

-
$$\mathscr{L}(\theta) = \mathscr{L}_{\text{data}}(\theta) + \mathscr{R}(\theta) = 0$$

Schirmer et al. Neural Networks for Implicit Representations of 3D Scenes. SIBGRAPI. 2021.

Image: $I : \mathbb{R}^2 \to \mathscr{C}$

Image morphing: $f : \mathbb{R}^2 \times [0,1] \to \mathscr{C}$

Surface evolution: $f : \mathbb{R}^3 \times [0,1] \to \mathbb{R}$ Implicit surface: $g : \mathbb{R}^3 \to \mathbb{R}$

Neural Media

Unisinos - Luiz Schirmer

• PUC-Rio

- Vinícius da Silva
- Alberto Raposo
- Hélio Lopes

- Daniel Perazzo - Diana Aldana - Hallison Paz - Alberto Kopiler - Tiago Novello - Luiz Velho

The INR pipeline

Related works

- Implicit neural representations, coordinate-based networks, neural fields, and neural implicits.
- [Mescheder et al. 2018, Occupancy Net]
- [Park et al. 2018, DeepSDF]
- [Sitzmann at al. 2019, SIREN]
- [Gropp et al. 2019, IGR]
- [Mildenhall et al. 2020, NeRF]

- ...

- -

[Sirignano et al. 2018, DGM] [Raissi et al. 2019, PINNs]

- Sinusoidal INRs.
- [Parascandolo et al. 2016, Taming]
- [Sitzmann at al. 2019, SIREN]

. . .

Exploring Differential Geometry in Neural Implicits

Neural Implicit Surface Evolution using Differential Equations

Neural flows

Multiresolution sinusoidal INRs

Periodic textures

3D scene reconstruction

Taming the sinusoidal INRs

Geometry processing

Exploring Differential Geometry in Neural Implicits

Neural Implicit Surface Evolution using Differential Equations

Neural flows

Multiresolution sinusoidal INRs

Neural implicit mapping via nested neighborhoods

Periodic textures

3D scene reconstruction

Taming the sinusoidal INRs

Exploring Differential Geometry in Neural Implicits

Neural Implicit Surface Evolution using Differential Equations

Image processing

Neural flows

Multiresolution sinusoidal INRs

Neural implicit mapping via nested neighborhoods

Periodic textures

3D scene reconstruction

Exploring Differential Geometry in Neural Implicits

Neural Implicit Surface Evolution using Differential Equations

Neural flows

Multiresolution sinusoidal INRs

Periodic textures

3D scene reconstruction

Taming the sinusoidal INRs

Data

Novello et al. Exploring differential geometry in neural implicits. Computers & Graphics, 2022.

Rendering

Implicit shapes

- **Problem**: Represent a surface *S* implicitly.
 - Find a function f such that:
 - f(x) = 0 if x is on S.
 - f(x) > 0 if x is outside S.
 - f(x) < 0 if x is inside S.
 - Thus, $S = \{x \mid f(x) = 0\}$
 - Many options for \boldsymbol{f}

Implicit shapes

- The signed distance function (SDF) f of S is an important example of implicit function:
 - f(x) measures the distance of each point x to S:
 - f(x) = 0 if x is on S
 - f(x) > 0 if x is outside S
 - f(x) < 0 if x is inside S

- Implicit function theorem:
 - For $f^{-1}(0)$ to be a surface in a **neighborhood** of a point x we need $\nabla f(x) \neq 0$.

Implicit shapes

Signed distance function

• A function $g: \Omega \to \mathbb{R}$ fits the SDF of S if it satisfies the **Eikonal** eq.

$$\begin{cases} |\nabla g| = 1 \text{ in } \Omega, \\ g = 0 \quad \text{on } S. \end{cases}$$

- Which implies that $\frac{\partial g}{\partial N} = \langle \nabla g, N \rangle = 1.$
- We use these constraints to define the loss functional.

Signed distance function

• A function $g: \Omega \to \mathbb{R}$ fits the SDF of S if it satisfies the **Eikonal** eq.

$$\begin{cases} |\nabla g| = 1 \text{ in } \Omega, \\ g = 0 \quad \text{on } S. \end{cases}$$

- Which implies that $\frac{\partial g}{\partial N} = \langle \nabla g, N \rangle = 1.$
- We use these constraints to define the loss functional.
- In practice, we have a **sample** $\{x_i, N_i\}$

Data

Novello et al. Exploring differential geometry in neural implicits. Computers & Graphics, 2022.

Rendering

Data

Novello et al. Exploring differential geometry in neural implicits. Computers & Graphics, 2022.

Rendering

Regularization

Forces
$$f$$
 to be a SDF.

$$\begin{cases} \mathscr{F} = |\nabla g| - 1 = 0 \text{ in } \Omega \\ g = 0 \text{ on } S \end{cases}$$

Data

Novello et al. Exploring differential geometry in neural implicits. Computers & Graphics, 2022.

Rendering

Curvatures

Schirmer et al. How to train your (neural) dragon. SIBGRAPI. 2023.

Curvatures

Gaussian curvature

Mean curvature

Future works:

- Compute ridges (depends on the third derivative).
- Geodesics (also explore NN to model surface parametrizations).

• **Problem**: Real-time rendering of (neural) level sets using sphere tracing.

The intersection between $\gamma(t) = x_0 + tv$ and $f^{-1}(0)$ is approximated by iterating:

$$- p_{i+1} = p_i + f(p_i)v$$

Rendering

- Problem: Real-time rendering of (neural) level sets using sphere tracing.
- Idea: Use coarser networks in the early iterations of the algorithm.
- We need the existence of a nested sequence of zero-level sets neighborhood.

Silva et al. Neural Implicit Mapping via Nested Neighborhoods. arXiv. 2022.

multiscale sphere tracing

PDE solution

Input data

Novello et al. Neural Implicit Surface Evolution. ICCV. 2023.

Rendering

Input data

Novello et al. Neural Implicit Surface Evolution. ICCV. 2023.

Rendering

$$\mathcal{F}^2 dx dt$$

$$\mathbf{P}(a,b)$$

$$\frac{1}{t=0}$$
• $f_t^{-1}(0)$ is **smooth** both in space and tir

Regularization

Differential equation

$$\mathcal{F} = 0 \text{ in } \Omega \times (a, b),$$

$$f = g \quad \text{on } \Omega \times \{0\}$$
.

Input data

Novello et al. Neural Implicit Surface Evolution. ICCV. 2023.

Rendering

$$\mathcal{F}^2 dx dt$$

$$\mathbf{P}(a,b)$$

•
$$f_t^{-1}(0)$$
 is **smooth** both in space and time.

Regularization Level set equation $\mathcal{F} = \frac{\partial f}{\partial t} + v |\nabla f| = 0 \text{ in } \Omega \times (a, b),$ $f = g \qquad \qquad \text{on } \Omega \times \{0\}.$

Evolving the level sets of neural networks

Mean curvature equation

t = 0

Future works:

Relate it with MR neural networks to use to accelerate rendering.

Deformation driven by vector

We blend the **sink** and **source** VFs using gaussians.

Interpolation between implicit surfaces

Future works:

• Disentangle the surfaces from the deformation $T : \mathbb{R}^3 \times \mathbb{R} \to \mathbb{R}^3$.

Disentangle deformation from the object

- **Problem**: the INR $f : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ has to learn a deformation of $g = f(\cdot, 0)$ at each time *t*.
- **Proposal:** represent such deformations by another INR T : $\mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$.
 - $f(x, t) = g \circ T^{-1}(x, t)$
 - Consider T to be a flow:

- T(x,0) = x, and T(T(x,s),t) = T(x,t+s).

•
$$T^{-1}(x, t) = T(x, -t)$$

Morphing of objects

- **Problem**: morphing between two images $I_i : \mathbb{R}^2 \to \mathscr{C}$. lacksquare
- Train a flow $T : \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^2$ to align the features.

Schardong et al. Neural implicit morphing of face images. CVPR. 2024.

 $\mathbf{I}_1: \mathbb{R}^2 \to \mathscr{C}$

Morphing $f : \mathbb{R}^2 \times [0,1] \to \mathscr{C}$

Feature alignment along time

Schardong et al. Neural implicit morphing of face images. CVPR. 2024.

Blending using diffusion models

[diffAE]

Schardong et al. Neural implicit morphing of face images. CVPR. 2024.

Faces of different ethnicities and genders

Schardong et al. Neural implicit morphing of face images. CVPR. 2024.

Morphing of objects

- **Problem**: morphing between two images $I_i : \mathbb{R}^2 \to \mathscr{C}$. lacksquare
- Train a flow $T : \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^2$ to align the features.

 $\mathbf{I}_1: \mathbb{R}^2 \to \mathscr{C}$

Future works:

• Morphing between surfaces.

Sinusoidal INRs

•
$$h(x) = \sin\left(\sum_{i=1}^{n} a_i \sin(\omega_i x + \varphi_i) + b\right)$$

Multiresolution Neural Networks for Imaging

Input

Anti-aliasing

Paz et al. Multiresolution neural networks for imaging. SIBGRAPI. 2022. Paz et al. MR-Net: Multiresolution sinusoidal neural networks. Computers & Graphics. 2023.

Multiresolution Neural Networks for Imaging

Input

Paz et al. Multiresolution neural networks for imaging. SIBGRAPI. 2022. Paz et al. MR-Net: Multiresolution sinusoidal neural networks. Computers & Graphics. 2023.

Output

Curves and surfaces in multiresolution (using the mean curvature equation).

Periodic networks (Work in progress)

- Sinusoidal neuron $h(x) = \sin\left(\sum_{i=1}^{n} a_i \sin(a_i)\right)$
- If the input neurons are periodic with period P, the neuron h is periodic with period P. Texture representation.

Paz et al. Implicit Neural Representation of Tileable Material Textures. arXiv. 2024 Novello. Understanding Sinusoidal Neural Networks. arXiv, 2023.

$$\omega_i x + \varphi_i) + b \right) = \sum_{\mathbf{k} \in \mathbb{Z}^n} \alpha_{\mathbf{k}}(a) \sin(\langle \mathbf{k}, \omega x + \varphi \rangle + b)$$

Future works:

- Represent panoramic images.
- Closed curves.
- Surfaces having the topology $\mathbb{S}^1 \times \mathbb{S}^1$.

Back to the graphics pipeline

• **Diff scene representation.**

- Mesh, volume, implicits...
- Domain in \mathbb{R}^3

- **Diff rendering.**
 - Rasterization, ray tracing, volume ray casting.

Rendered images.

[MRnet, morph, texture, taming]

Obrigado!

Understanding Sinusoidal Neural Networks

A trigonometric identity...

Sinusoidal neuron $h(x) = \sin\left(\sum_{i=1}^{n} a_i \sin(\omega_i x)\right)$

We can prove that $h(x) = \sum \alpha_{\mathbf{k}}(a) \sin(\langle \mathbf{k}, a \rangle)$ $\mathbf{K} \in \mathbb{Z}^n$ f^{π} • $J_{k_i}(a_i) = \left| \cos(k_i t - a_i \sin(t)) dt \right|$ are the Bessel functions of the first

Novello. Understanding Sinusoidal Neural Networks. arXiv, 2023.

$$(x+\varphi_i)+b$$

 \mathbf{N}

$$(\omega x + \varphi) + b$$
) with $\alpha_{\mathbf{k}}(a) = \prod_{i=1}^{n} J_{k_i}(a_i)$

Some consequences...

- Sinusoidal neuron $h(x) = \sin\left(\sum_{i=1}^{n} a_i \sin(x)\right)$
- The sinusoidal neural is producing a large number of new frequencies $\langle k, \omega \rangle$;

- We prove that amplitudes $\alpha_{\mathbf{k}}(a)$ are bound

$$(\omega_i x + \varphi_i) + b \right) = \sum_{\mathbf{k} \in \mathbb{Z}^n} \alpha_{\mathbf{k}}(a) \sin(\langle \mathbf{k}, \omega x + \varphi \rangle + \mathbf{k})$$

nded by
$$\prod_{i=1}^{n} \frac{\left(\frac{|a_i|}{2}\right)^{|k_i|}}{|k_i|!};$$

Controlling the frequency band of the network during training (Diana Aldana's Thesis)

