## VISGRAF LAB WEBINAR 2020-09-23

# SIGGRAPH.ORG THINK BEVOND

The leopard never changes its spots: realistic pigmentation pattern formation by coupling tissue growth with reaction-diffusion

Marcelo de Gomensoro Malheiros - FURG Henrique Fensterseifer - UFRGS Marcelo Walter - UFRGS

## OVERVIEW

- Pigment formation
- Tissue growth
- Pattern enlargement
- Results
- Conclusions

sample code at **mgmalheiros.github.io** 





## **RESEARCH GOAL**

- We aim to realistically reproduce animal patterns
  - but we also want to get insights into the underlying biological processes
  - therefore, we look for a plausible explanation for pigmentation pattern formation
  - for that, we have explored the expressiveness of combining simple mechanisms
  - we have found that reaction-diffusion and tissue growth both play crucial roles







#### **PIGMENT FORMATION**

- Reaction-Diffusion (RD)
- Implementation
- Exploratory approach



Dioporting work of Alon T

» **OVERVIEW** 

- Pioneering work of Alan Turing
- Models autocatalytic chemical reactions
- PDEs involving two reagents A and B:
  - a and b are local concentrations
  - there are reaction and diffusion parts
  - diffusion depends on nearby concentrations
  - $D_a$  and  $D_b$  are the diffusion rates

$$\frac{\partial a}{\partial t} = 16 - ab + D_a \nabla^2 a$$
$$\frac{\partial b}{\partial t} = ab - b - 12 + D_b \nabla^2 b$$



» DISCRETIZATION

- RD is typically solved by numerical methods
- Forward Euler integration is simple and fast
- The domain is a square lattice:
  - a and b are now two matrices
  - ¬ ∇<sup>2</sup>a and ∇<sup>2</sup>b are the Laplacian operators,
    implemented by finite differences
  - we use a 9-point stencil, with the given weights around a center cell

$$\Delta a = (16 - ab + D_a \nabla^2 a) \Delta t$$

 $\Delta b = (ab - b - 12 + D_b \nabla^2 b) \Delta t$ 



#### » SIMULATION

- First, define the initial values for a and b
- Given  $\Delta t$ , loop until a final time is reached
- At each iteration:
  - compute Laplacians for all matrix elements
  - evaluate  $\Delta a$  and  $\Delta b$
  - calculate  $a_{next}$  and  $b_{next}$
  - limit  $a_{next}$  by lower bound  $L_a$  and upper bound  $U_a$
  - limit  $b_{next}$  by lower bound  $L_b$  and upper bound  $U_b$



$$a_{next} = a + \Delta a$$

$$b_{next} = b + \Delta b$$

$$a = clip(a_{next}, L_a, U_a)$$

$$b = clip(b_{next}, L_b, U_b)$$

2020 SZOZO.SIGGRAPH.ORG

- Reaction-diffusion is sensitive to initial values
- However, pattern formation is also *robust*:
  - small perturbations yield small pattern changes
  - a fixed set of parameters induces the same resulting pattern structure, despite the randomness
- For most experiments we use:

**» INITIAL CONDITIONS** 

$$-a_{initial} = 4$$



**» BOUNDARY CONDITIONS** 

- We employ two types of boundaries:
  - toroidal wrapping  $\rightarrow$  matrix borders wrap around

no-flux boundary → matrix borders have their concentrations extended outward







» VISUALIZATION

- The Turing model exhibits cross kinetics, that is, A and B are completely out of phase
- For display:
  - we typically map either the *a* or *b* matrices to a perceptually-uniform color map
  - some experiments also use a simple linearinterpolated color map
  - no further alteration



## **EXPLORATORY APPROACH** » PARAMETERS



- We have explored the parameter space of the original model, and then proposed extensions to improve expressibility and usage:
  - let  $D_a = r s$  and  $D_b = s$
  - *r* is the ratio between diffusion rates  $\rightarrow$  structure
  - s expresses the overall pattern scale
  - previously  $L_b = 0$ , but we found that positive values also alter the pattern structure
  - setting  $U_a$  and  $U_b$  also changes the dynamics



## **EXPLORATORY APPROACH**



#### » PARAMETER MAPS





#### **TISSUE GROWTH**

- Static and growing domains
- Matrix expansion
- Effect of growth

## STATIC DOMAIN

- Normal Turing patterns present a space-filling behavior
- Patterns tend to create equispaced *features*:
  - spots
  - stripes or labyrinths
  - a mix of both
- The average distance between features is called the pattern *wavelength*





## **GROWING DOMAIN**

**» TWO PREVIOUS APPROACHES** 

- #1 Add continuous growth term to PDEs:
  - simulation still runs over a square lattice
- #2 A point-based cellular model, following the biologic analogy:
  - diffusion occurs only among nearby cells
  - cells divide and push others
- The drawback is being expensive:
  - needs collision mechanics
  - needs repeated Nearest Neighbor Search





## **GROWING DOMAIN**

» A NOVEL APPROACH

- Here we propose *matrix expansion*:
  - we approximate uniform growth by randomly selecting matrix elements and duplicating them
  - this is performed once for each row  $\rightarrow\,$  yields a new column
  - then it is performed once for each column → yields a new row
- The domain is always a regular matrix:
  - on average, cell divisions are uniformly spread
  - we define a growth rate during simulation



## **EFFECT OF GROWTH** » INITIAL STATE



Only growth reagent B



1

## **EFFECT OF GROWTH** » ONLY GROWTH, NO DIFFUSION





## **EFFECT OF GROWTH** » GROWTH AND REACTION-DIFFUSION



**Reaction-diffusion and growth** 

reagent **B** 



## **»** GROWTH AND SATURATED REACTION-DIFFUSION



Saturated RD and growth

reagent **B** 





#### PATTERN ENLARGEMENT

- Problem
- Continuous reinforcement
- Effect of growth



## PROBLEM

- How to maintain the overall pattern appearance during growth?
  - cell division adds noise!
  - large constant areas need to expand
  - borders must be kept well-defined: sharp, not blurry
- Reaction-diffusion does not have these properties, but a similar model can achieve this



photo by m\_bos (Pixabay licence)

## **CONTINUOUS REINFORCEMENT** » OVERVIEW



- Models an autocatalytic reaction
- Has a dual effect: smoothing and maintenance
- PDE involving reagent C:
  - c is the local concentration
  - there are reaction and diffusion parts
  - diffusion depends on nearby concentrations
  - $D_c$  is the diffusion rate

$$\frac{\partial c}{\partial t} = \gamma (t - w - c) (t - c) (t + w - c) + D_c \nabla^2 c$$



## **CONTINUOUS REINFORCEMENT**

**» GROWTH AND REINFORCEMENT** 



Only reinforcement reagent A 2000



#### RESULTS

• Impact of initial state

• Simulated biologic patterns





- The initial state of the simulation is called a *prepattern*
- We employed two types of prepatterns:
  - random initial concentration
  - local random production
- Simulations have two or more phases
- The resulting concentrations of a phase are directly fed into the next phase

#### RESULTS **» RANDOM INITIAL CONCENTRATION**



- Prepattern:
  - reagent A starts constant
  - reagent B starts constant plus a small random variation
- The first phase usually develops into spots
- Many works state the ubiquity of spots in early embryonic development











#### **RESULTS** » RETICULATE WHIPRAY



## Reticulate whipray reagent B



10





photo by Brian Gratwicke (Flickr, CC BY 2.0)

#### **RESULTS** » RETICULATE WHIPRAY



## Reticulate whipray reagent B







photo by Brian Gratwicke (Flickr, CC BY 2.0)

#### **RESULTS** » HONEYCOMB WHIPRAY



## Honeycomb whipray reagent B





20



photo by the authors

#### **RESULTS** » HONEYCOMB WHIPRAY



Honeycomb whipray reagent B



24000





photo by the authors



#### **RESULTS** » YELLOW-BANDED POISON DART FROG



#### photo by Adrian Pingstone (Wikimedia Commons, public domain)

## Yellow-banded poison dart frog reagent A



20



#### **RESULTS** » YELLOW-BANDED POISON DART FROG



photo by Adrian Pingstone (Wikimedia Commons, public domain)

## Yellow-banded poison dart frog reagent A



#### 19000

#### **RESULTS** » LOCAL RANDOM PRODUCTION



- Prepattern:
  - reagent A starts constant
  - reagent B starts constant
  - B is produced in small random amounts, along the *dorsal spine*
- The first phase usually develops into straight stripes
- Growth noise disrupts the stripes in very interesting ways





#### **RESULTS** » THIRTEEN-LINED GROUND SQUIRREL

## Thirteen-lined ground squirrel reagent B



20



photo by Mnmazur (Wikimedia Commons, public domain)



#### **RESULTS** » THIRTEEN-LINED GROUND SQUIRREL

#### Thirteen-lined ground squirrel

#### reagent **B**



#### 16000



photo by Mnmazur (Wikimedia Commons, public domain)

#### **RESULTS** » LEOPARD





## **RESULTS** » LEOPARD







photo by Derek Keats (Flickr, CC BY 2.0)

#### photo by Derek Keats (Flickr, CC BY 2.0)

## » LEOPARD

RESULTS

- With a single set of parameters:
  - stripes develop into spatially-organized spots
  - due to growth, spots split into rosettes
  - limited growth in the dorsal spine produces deformed rosettes
  - shorter growth phases provide continuous
    variation of rosettes on other parts of the body





#### **RESULTS** » LEOPARD

- Important insights:
  - the residual pattern before growth provides the brown spots
  - pheomelanin (reddish pigment) and eumelanin
    (black pigment) are induced by the same process
- 3D rendering:
  - simple mapping from final concentrations to pigmentation, using a specialized fur shader
  - visual complexity arises from fur orientation and self-shading







#### CONCLUSIONS

- Contributions
- Future work

## CONCLUSIONS



- » CONTRIBUTIONS
- Tissue growth can be successfully approximated by matrix expansions
- The extended RD model provides great expressiveness and more intuitive controls
- A continuous reinforcement equation is demonstrated
- We emphasize the importance of the careful definition of the initial state
- We have generated a few unprecedented 2D patterns matching real species

## CONCLUSIONS

**» FUTURE WORK** 



- Simulate pigment formation over a developing 3D surface
- Evaluate other mechanisms to couple geometric modification and localized pattern change
- Provide a deeper mathematical analysis
- Implement an artist-oriented pipeline for pattern design
- Develop a technique for pattern similarity comparison and visual characterization, able to automate classification and recognition
- Perform new experiments to reproduce more species

## **THANK YOU!**

# SIGGRAPH.ORG THINK 2020 S2020.SIGGRAPH.ORG

The leopard never changes its spots: realistic pigmentation pattern formation by coupling tissue growth with reaction-diffusion

Marcelo de Gomensoro Malheiros - FURG Henrique Fensterseifer - UFRGS Marcelo Walter - UFRGS