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Deep Lip Reading: a comparison of models and an online application

Context & Motivation

Lip reading: what is it and what role does it play?

I The ability to recognize what is being said based on visual
information

I It plays a crucial role in human communication and speech
understanding [McGurk and MacDonald, 1976]

I babies selectively observe their interlocutor’s vocal during social
interactions [Lewkowicz and Hansen-Tift, 2012]

I It’s a difficult task for humans, specially in the absence of
context

I Multiple sounds (phonemes) have almost identical lip
shapes (i.e., viseme)
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Context & Motivation

Human lipreading performance is normally poor

I Hearing-impaired people’s accuracy is only [Easton and
Basala, 1982]

I 17 % ± 12 % for 30 monosyllabic words
I 21 % ± 11 % for 30 compound words

I Enormous applications including

I improve hearing aids
I silent dictation in public spaces
I speech recognition in noisy environments
I salience movie processing

I Automate lipreading comprises an important goal
I Machine lipreading requires extracting spatiotemporal

features from the videos
I Deep learning approaches offer an end-to-end strategy to

extract these features
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LipNet

Pre-deep learning and first deep learning attempts

Speakers generalization and motion extractions were the main issues

Task

Given a silence video of a talking face, predict the sentences being
spoken

I Many works focused on video and image preprocessing to
extract different features [Zhou et al., 2014]
I Hidden Markov model (HMM) and generalized method of

moments (GMM) combined with handed-engineered features
I Speaker-dependency accuracy and/or limited utterances

I First deep learning attempts limited to word or phoneme
classification
I Fixed sequences size
I Speaker-dependent
I Lacked sequence prediction

I Connectionist temporal classification (CTC) loss [Graves
et al., 2006]
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LipNet

Pre-deep learning and first deep learning attempts

First to show an end-to-end strategy for lipreading

I Maps variable-length sequences of video frames to text
sequences

I GRID corpus 33k sentences

Figure 3: LipNet architecture. Source: Assael et al., 2016
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LipNet

Pre-deep learning and first deep learning attempts

GRID dataset has a fixed grammar structure

Table 1: GRID sentence and grammar structure

command color∗ preposition letter∗ digit adverb∗

{bin, lay, place, set} {blue, green, red, white} {at, by, in, with} [A–Z] \ {W} [0–9] {again, now, please, soon}

∗keywords
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LipNet

Pre-deep learning and first deep learning attempts

Four different strategies to compare with the LipNet performance

I Hearing-impaired students three members of the Oxford
Students’ Disability community

I Baseline-LSTM: replicate a state-of-the art architecture
I Baseline-2D: spatial-only convolutions
I Baseline-NoLM: language model disabled
I Use word error rate (WER) and character error rate (CER)
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LipNet

Results

LipNet outperforms human and previous state-of-the-art model

Table 2: Performance of LipNet on the GRID dataset

Unseen Speakers Overlapped Speakers
Method CER WER CER WER

Hearing-Impaired – 47.7% – –
Baseline-LSTM 38.4% 52.8% 15.2% 26.3%

Baseline-2D 16.2% 26.7% 4.3% 11.6%
Baseline-NoLM 6.7% 13.6% 2.0% 5.6%

LipNet 6.4% 11.4% 1.9% 4.8%
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LipNet

Takeaways

LipNet: takeaways

I It is an end-to-end sentence-sequence prediction model

I spatiotemporal frontend + 3D and 2D convolutions + 2 x
bidirectional-LSTM (BLSTM)

I It relies on CTC to:

1 predict frame-wise labels
2 look for the optimal alignment between the frame-wise predictions

and the output sequence

I Confirms the importance of combining STCNNs with RNNs
I Extracting spatiotemporal features using STCNN is better than

aggregating spatial-only features
I GRID dataset: fixed grammar structure
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Deep Lip Reading

Focus on analyzing the performance of different DL architectures

Goal

I Compare the performance and training time of three different deep
learning architectures

Figure 4: Deep lipreading models. Source: Afouras, Chung, and Zisserman, 2018
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Deep Lip Reading

Vision module

Spatiotemporal visual front-end

I Spatiotemporal 3D convolutional on the
input with a filter width of five frames

I Followed by a 2D ResNet which decreases
the spatial dimensions

I For an input sequence of T × H × W
frames outputs a T × H

32 × W
32 × 512 tensor

I Results in a 512-dimensional feature vector
for each input video frame
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Deep Lip Reading

Bidirectional LSTM

Bidirectional LSTM (BLSTM)

I Comprises three stacked bidirectional
LSTMs

I Ingests the video feature vectors
I Outputs a character probability for each

input frame
I It’s trained with connectionist temporal

classification (CTC)
I Output alphabet is augmented with CTC

blank character
I Decoding is performed with a beam search
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Deep Lip Reading

Fully convolutional

Fully convolutional (FC) model

I Rely on a depth-wise separable convolution
layers

I Each convolution adds a skip-connection
followed by ReLU and batch normalization

I Also trained with CTC loss
I Considers two variants: 10 and 15

convolutional layers
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Deep Lip Reading

Transformer

Transformer model (TC)

I Input serves as attention queries, keys, and
values

I Encoder outputs are the the attention keys
and values

I Previous decoding layer outputs are the
queries

I The decoder produces character
probabilities

I Rely on the based model proposed
by Vaswani et al., 2017

I 6 encoder and 6 decoder layers
I 8 attention heads with dropout with p = 0.1
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Deep Lip Reading

External language model

An external character-level language model

I Use a character-level language model during inference
I Recurrent neural network with 4 unidirectional layers of 1024

LSTM cells each
I Trained to predict one character at a time
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Deep Lip Reading

Experiments & Results

Two different datasets for performance evaluation

Table 3: Datasets used for trained and test

Dataset # Words Type Vocabulary # Utter. Viewpoint

LRW 489k single word 500 – unique
LRS2 2M sentences 41K 142K multiple

MV-LRS(w) 1.9M sentences 480 – unique
MV-LRS 5M sentences 30K 430K unique

LRW: Lip Reading in the Wild
LRS2: Lip Reading Sentences 2
I Two different corpora to train the language model

1 transcriptions of the LRS2 pre-train and main train-data ≡ 2M
words

2 full subtitles of LRS2 training set ≡ 26M words
I Evaluated on LRS2 ≡ 1, 243 utterances
I Report character error rates (CER) and word error

rates (WER)



19/23

Deep Lip Reading: a comparison of models and an online application

Deep Lip Reading

Experiments & Results

Two different datasets for performance evaluation

Table 3: Datasets used for trained and test

Dataset # Words Type Vocabulary # Utter. Viewpoint

LRW 489k single word 500 – unique
LRS2 2M sentences 41K 142K multiple

MV-LRS(w) 1.9M sentences 480 – unique
MV-LRS 5M sentences 30K 430K unique

LRW: Lip Reading in the Wild
LRS2: Lip Reading Sentences 2
I Two different corpora to train the language model

1 transcriptions of the LRS2 pre-train and main train-data ≡ 2M
words

2 full subtitles of LRS2 training set ≡ 26M words
I Evaluated on LRS2 ≡ 1, 243 utterances
I Report character error rates (CER) and word error

rates (WER)



19/23

Deep Lip Reading: a comparison of models and an online application

Deep Lip Reading

Experiments & Results

Two different datasets for performance evaluation

Table 3: Datasets used for trained and test

Dataset # Words Type Vocabulary # Utter. Viewpoint

LRW 489k single word 500 – unique
LRS2 2M sentences 41K 142K multiple

MV-LRS(w) 1.9M sentences 480 – unique
MV-LRS 5M sentences 30K 430K unique

LRW: Lip Reading in the Wild
LRS2: Lip Reading Sentences 2
I Two different corpora to train the language model

1 transcriptions of the LRS2 pre-train and main train-data ≡ 2M
words

2 full subtitles of LRS2 training set ≡ 26M words

I Evaluated on LRS2 ≡ 1, 243 utterances
I Report character error rates (CER) and word error

rates (WER)



19/23

Deep Lip Reading: a comparison of models and an online application

Deep Lip Reading

Experiments & Results

Two different datasets for performance evaluation

Table 3: Datasets used for trained and test

Dataset # Words Type Vocabulary # Utter. Viewpoint

LRW 489k single word 500 – unique
LRS2 2M sentences 41K 142K multiple

MV-LRS(w) 1.9M sentences 480 – unique
MV-LRS 5M sentences 30K 430K unique

LRW: Lip Reading in the Wild
LRS2: Lip Reading Sentences 2
I Two different corpora to train the language model

1 transcriptions of the LRS2 pre-train and main train-data ≡ 2M
words

2 full subtitles of LRS2 training set ≡ 26M words
I Evaluated on LRS2 ≡ 1, 243 utterances

I Report character error rates (CER) and word error
rates (WER)



19/23

Deep Lip Reading: a comparison of models and an online application

Deep Lip Reading

Experiments & Results

Two different datasets for performance evaluation

Table 3: Datasets used for trained and test

Dataset # Words Type Vocabulary # Utter. Viewpoint

LRW 489k single word 500 – unique
LRS2 2M sentences 41K 142K multiple

MV-LRS(w) 1.9M sentences 480 – unique
MV-LRS 5M sentences 30K 430K unique

LRW: Lip Reading in the Wild
LRS2: Lip Reading Sentences 2
I Two different corpora to train the language model

1 transcriptions of the LRS2 pre-train and main train-data ≡ 2M
words

2 full subtitles of LRS2 training set ≡ 26M words
I Evaluated on LRS2 ≡ 1, 243 utterances
I Report character error rates (CER) and word error

rates (WER)



20/23

Deep Lip Reading: a comparison of models and an online application

Deep Lip Reading

Experiments & Results

Training process includes three stages

1 Visual front-end module
2 Use vision module to generate visual features for all the training

data
3 Sequence processing module
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