Deep Lip Reading: a comparison of models and an online application

January 20, 2021

Outline

2 LipNet

3 Deep Lip Reading

Lip reading: what is it and what role does it play?

The ability to recognize what is being said based on visual information

・ロト ・ 日 ト ・ 王 ト ・ 王 ・ つ へ つ 3/23

Lip reading: what is it and what role does it play?

- The ability to recognize what is being said based on visual information
- It plays a crucial role in human communication and speech understanding [McGurk and MacDonald, 1976]

Lip reading: what is it and what role does it play?

- The ability to recognize what is being said based on visual information
- It plays a crucial role in human communication and speech understanding [McGurk and MacDonald, 1976]
 - babies selectively observe their interlocutor's vocal during social interactions [Lewkowicz and Hansen-Tift, 2012]

Lip reading: what is it and what role does it play?

- The ability to recognize what is being said based on visual information
- It plays a crucial role in human communication and speech understanding [McGurk and MacDonald, 1976]
 - babies selectively observe their interlocutor's vocal during social interactions [Lewkowicz and Hansen-Tift, 2012]
- It's a difficult task for humans, specially in the absence of context

Lip reading: what is it and what role does it play?

- The ability to recognize what is being said based on visual information
- It plays a crucial role in human communication and speech understanding [McGurk and MacDonald, 1976]
 - babies selectively observe their interlocutor's vocal during social interactions [Lewkowicz and Hansen-Tift, 2012]
- It's a difficult task for humans, specially in the absence of context
- Multiple sounds (phonemes) have almost identical lip shapes (i.e., viseme)

Figure 1: Bark pronunciation

Figure 2: Mark pronunciation

Human lipreading performance is normally poor

 Hearing-impaired people's accuracy is only [Easton and Basala, 1982]

Deep Lip Reading: a comparison of models and an online application

Human lipreading performance is normally poor

 Hearing-impaired people's accuracy is only [Easton and Basala, 1982]

• 17 $\% \pm$ 12 % for **30 monosyllabic words**

Deep Lip Reading: a comparison of models and an online application

Human lipreading performance is normally poor

 Hearing-impaired people's accuracy is only [Easton and Basala, 1982]

・ロト・日本・日本・日本・日本・日本・クタマー 4/23

- 17 $\% \pm$ 12 % for **30 monosyllabic words**
- $21\% \pm 11\%$ for **30 compound words**

Deep Lip Reading: a comparison of models and an online application

Human lipreading performance is normally poor

 Hearing-impaired people's accuracy is only [Easton and Basala, 1982]

- $17\% \pm 12\%$ for **30 monosyllabic words**
- $21\% \pm 11\%$ for **30 compound words**

Human lipreading performance is normally poor

 Hearing-impaired people's accuracy is only [Easton and Basala, 1982]

- $\blacktriangleright~17\,\%\pm12\,\%$ for 30 monosyllabic words
- $21\% \pm 11\%$ for **30 compound words**
- Enormous applications including

improve hearing aids

Human lipreading performance is normally poor

 Hearing-impaired people's accuracy is only [Easton and Basala, 1982]

- $17\% \pm 12\%$ for **30 monosyllabic words**
- $21\% \pm 11\%$ for **30 compound words**

- improve hearing aids
- silent dictation in public spaces

Human lipreading performance is normally poor

 Hearing-impaired people's accuracy is only [Easton and Basala, 1982]

- $17\% \pm 12\%$ for **30 monosyllabic words**
- $21\% \pm 11\%$ for **30 compound words**

- improve hearing aids
- silent dictation in public spaces
- speech recognition in noisy environments

Human lipreading performance is normally poor

 Hearing-impaired people's accuracy is only [Easton and Basala, 1982]

- $17\% \pm 12\%$ for **30 monosyllabic words**
- $21\% \pm 11\%$ for **30 compound words**

- improve hearing aids
- silent dictation in public spaces
- speech recognition in noisy environments
- salience movie processing

Human lipreading performance is normally poor

 Hearing-impaired people's accuracy is only [Easton and Basala, 1982]

- $17\% \pm 12\%$ for **30 monosyllabic words**
- $21\% \pm 11\%$ for **30 compound words**

Enormous applications including

- improve hearing aids
- silent dictation in public spaces
- speech recognition in noisy environments
- salience movie processing
- Automate lipreading comprises an important goal

(ロ) (日) (日) (日) (日) (日) (123)

Human lipreading performance is normally poor

 Hearing-impaired people's accuracy is only [Easton and Basala, 1982]

- $17\% \pm 12\%$ for **30 monosyllabic words**
- $21\% \pm 11\%$ for **30 compound words**

- improve hearing aids
- silent dictation in public spaces
- speech recognition in noisy environments
- salience movie processing
- Automate lipreading comprises an important goal
- Machine lipreading requires extracting spatiotemporal features from the videos

Human lipreading performance is normally poor

 Hearing-impaired people's accuracy is only [Easton and Basala, 1982]

- $17\% \pm 12\%$ for **30 monosyllabic words**
- $21\% \pm 11\%$ for **30 compound words**

- improve hearing aids
- silent dictation in public spaces
- speech recognition in noisy environments
- salience movie processing
- Automate lipreading comprises an important goal
- Machine lipreading requires extracting spatiotemporal features from the videos
- Deep learning approaches offer an end-to-end strategy to extract these features

Outline

Pre-deep learning and first deep learning attempts

- Results
- Takeaways

Deep Lip Reading: a comparison of models and an online application

LipNet

Pre-deep learning and first deep learning attempts

Speakers generalization and motion extractions were the main issues

Task

Given a silence video of a talking face, predict the sentences being spoken

<ロ>< □> < □> < □> < 三> < 三> < 三> < 三> ○へで 6/23

Deep Lip Reading: a comparison of models and an online application

LipNet

Pre-deep learning and first deep learning attempts

Speakers generalization and motion extractions were the main issues

Task

Given a silence video of a talking face, predict the sentences being spoken

- Many works focused on video and image preprocessing to extract different features [Zhou et al., 2014]
 - Hidden Markov model (HMM) and generalized method of moments (GMM) combined with handed-engineered features

6/23

Speaker-dependency accuracy and/or limited utterances

Pre-deep learning and first deep learning attempts

Speakers generalization and motion extractions were the main issues

Task

Given a silence video of a talking face, predict the sentences being spoken

- Many works focused on video and image preprocessing to extract different features [Zhou et al., 2014]
 - Hidden Markov model (HMM) and generalized method of moments (GMM) combined with handed-engineered features
 - Speaker-dependency accuracy and/or limited utterances
- First deep learning attempts limited to word or phoneme classification
 - Fixed sequences size
 - Speaker-dependent
 - Lacked sequence prediction

Pre-deep learning and first deep learning attempts

Speakers generalization and motion extractions were the main issues

Task

Given a silence video of a talking face, predict the sentences being spoken

- Many works focused on video and image preprocessing to extract different features [Zhou et al., 2014]
 - Hidden Markov model (HMM) and generalized method of moments (GMM) combined with handed-engineered features
 - Speaker-dependency accuracy and/or limited utterances
- First deep learning attempts limited to word or phoneme classification
 - Fixed sequences size
 - Speaker-dependent
 - Lacked sequence prediction
- Connectionist temporal classification (CTC) loss [Graves et al., 2006]

Deep Lip Reading: a comparison of models and an online application

Pre-deep learning and first deep learning attempts

First to show an end-to-end strategy for lipreading

- Maps variable-length sequences of video frames to text sequences
- GRID corpus 33k sentences

Figure 3: LipNet architecture. Source: Assael et al., 2016

Deep Lip Reading: a comparison of models and an online application

LipNet

Pre-deep learning and first deep learning attempts

GRID dataset has a fixed grammar structure

Table 1: GRID sentence and grammar structure

command	color*	preposition	letter*	digit	adverb*
{bin, lay, place, set}	{blue, green, red, white}	{at, by, in, with}	$[A{-}Z]\setminus\{W\}$	[0–9]	{again, now, please, soon}
* keywords					

Deep Lip Reading: a comparison of models and an online application

Pre-deep learning and first deep learning attempts

Four different strategies to compare with the LipNet performance

- Hearing-impaired students three members of the Oxford Students' Disability community
- **Baseline-LSTM**: replicate a state-of-the art architecture
- **Baseline-2D**: spatial-only convolutions
- Baseline-NoLM: language model disabled
- Use word error rate (WER) and character error rate (CER)

9/23

Results

LipNet outperforms human and previous state-of-the-art model

Table 2: Performance of LipNet on the GRID dataset

Method	Unseen CER	Speakers WER	Overlapped CER	Speakers WER
Hearing-Impaired	_	47.7%	_	_
Baseline-LSTM	38.4%	52.8%	15.2%	26.3%
Baseline-2D	16.2%	26.7%	4.3%	<mark>11.6</mark> %
Baseline-NoLM	6.7%	13.6%	2.0%	5.6%
LipNet	6.4%	11.4%	1.9%	4.8%

Deep Lip Reading: a comparison of models and an online application

LipNet

Takeaways

LipNet: takeaways

It is an end-to-end sentence-sequence prediction model

- Takeaways

LipNet: takeaways

It is an end-to-end sentence-sequence prediction model

 spatiotemporal frontend + 3D and 2D convolutions + 2 x bidirectional-LSTM (BLSTM)

・ロト 4 回 ト 4 臣 ト 4 臣 ト 臣 の 9 9 11/23

L Takeaways

LipNet: takeaways

It is an end-to-end sentence-sequence prediction model

 spatiotemporal frontend + 3D and 2D convolutions + 2 x bidirectional-LSTM (BLSTM)

・ロト 4 回 ト 4 臣 ト 4 臣 ト 臣 の 9 9 11/23

It relies on CTC to:

L Takeaways

LipNet: takeaways

It is an end-to-end sentence-sequence prediction model

- spatiotemporal frontend + 3D and 2D convolutions + 2 x bidirectional-LSTM (BLSTM)
- It relies on CTC to:
 - 1 predict frame-wise labels

L Takeaways

LipNet: takeaways

It is an end-to-end sentence-sequence prediction model

 spatiotemporal frontend + 3D and 2D convolutions + 2 x bidirectional-LSTM (BLSTM)

It relies on CTC to:

- 1 predict frame-wise labels
- 2 look for the optimal alignment between the frame-wise predictions and the output sequence

・ロト 4 回 ト 4 臣 ト 4 臣 ト 臣 の 9 9 11/23

- Takeaways

LipNet: takeaways

It is an end-to-end sentence-sequence prediction model

 spatiotemporal frontend + 3D and 2D convolutions + 2 x bidirectional-LSTM (BLSTM)

It relies on CTC to:

- 1 predict frame-wise labels
- 2 look for the optimal alignment between the frame-wise predictions and the output sequence

Confirms the importance of combining STCNNs with RNNs

- Takeaways

LipNet: takeaways

It is an end-to-end sentence-sequence prediction model

 spatiotemporal frontend + 3D and 2D convolutions + 2 x bidirectional-LSTM (BLSTM)

It relies on CTC to:

- 1 predict frame-wise labels
- 2 look for the optimal alignment between the frame-wise predictions and the output sequence

Confirms the importance of combining STCNNs with RNNs

Extracting spatiotemporal features using STCNN is better than aggregating spatial-only features

L Takeaways

LipNet: takeaways

It is an end-to-end sentence-sequence prediction model

- spatiotemporal frontend + 3D and 2D convolutions + 2 x bidirectional-LSTM (BLSTM)
- It relies on CTC to:
 - 1 predict frame-wise labels
 - 2 look for the optimal alignment between the frame-wise predictions and the output sequence

Confirms the importance of combining STCNNs with RNNs

- Extracting spatiotemporal features using STCNN is better than aggregating spatial-only features
- GRID dataset: fixed grammar structure

Outline

Context & Motivation

3 Deep Lip Reading

- Vision module
- Bidirectional LSTM
- Fully convolutional
- Transformer
- External language model

シュペ 12/23

- Experiments & Results
- Takeaways
Focus on analyzing the performance of different DL architectures

Goal

 Compare the performance and training time of three different deep learning architectures

Vision module (spatial-tempora 3D-convolution)

Figure 4: Deep lipreading models. Source: Afouras, Chung, and Zisserman, 2018

Focus on analyzing the performance of different DL architectures

Goal

 Compare the performance and training time of three different deep learning architectures

Figure 4: Deep lipreading models. Source: Afouras, Chung, and Zisserman, 2018

Focus on analyzing the performance of different DL architectures

Goal

 Compare the performance and training time of three different deep learning architectures

Figure 4: Deep lipreading models. Source: Afouras, Chung, and Zisserman, 2018

Focus on analyzing the performance of different DL architectures

Goal

 Compare the performance and training time of three different deep learning architectures

Figure 4: Deep lipreading models. Source: Afouras, Chung, and Zisserman, 2018

Deep Lip Reading

- Vision module

Spatiotemporal visual front-end

Vision module (spatial-temporal 3D-convolution)

- Spatiotemporal 3D convolutional on the input with a filter width of five frames
- Followed by a 2D ResNet which decreases the spatial dimensions
- ► For an input sequence of T × H × W frames outputs a T × H/32 × W/32 × 512 tensor
- Results in a 512-dimensional feature vector for each input video frame

Deep Lip Reading

Bidirectional LSTM

Bidirectional LSTM (BLSTM)

 Comprises three stacked bidirectional LSTMs

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ 15/23

Deep Lip Reading

Bidirectional LSTM

Bidirectional LSTM (BLSTM)

 Comprises three stacked bidirectional LSTMs

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ♡ < ♡ 15/23

Ingests the video feature vectors

Deep Lip Reading

Bidirectional LSTM

Bidirectional LSTM (BLSTM)

- Comprises three stacked bidirectional LSTMs
- Ingests the video feature vectors
- Outputs a character probability for each input frame

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ♡ < ♡ 15/23

Deep Lip Reading

Bidirectional LSTM

Bidirectional LSTM (BLSTM)

- Comprises three stacked bidirectional LSTMs
- Ingests the video feature vectors
- Outputs a character probability for each input frame
- It's trained with connectionist temporal classification (CTC)

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ♡ < ♡ 15/23

Deep Lip Reading

Bidirectional LSTM

Bidirectional LSTM (BLSTM)

Bidirectional LSTM (BL)

- Comprises three stacked bidirectional LSTMs
- Ingests the video feature vectors
- Outputs a character probability for each input frame
- It's trained with connectionist temporal classification (CTC)
- Output alphabet is augmented with CTC blank character

・ロト・1日ト・モート・モークへで 15/23

Bidirectional LSTM

Bidirectional LSTM (BLSTM)

- Comprises three stacked bidirectional LSTMs
- Ingests the video feature vectors
- Outputs a character probability for each input frame
- It's trained with connectionist temporal classification (CTC)
- Output alphabet is augmented with CTC blank character
- Decoding is performed with a beam search

Deep Lip Reading

Fully convolutional

Fully convolutional (FC) model

- Rely on a depth-wise separable convolution layers
- Each convolution adds a skip-connection followed by ReLU and batch normalization
- Also trained with CTC loss
- Considers two variants: 10 and 15 convolutional layers

Fully convolutional (FC)

Deep Lip Reading

- Transformer

Transformer model (TC)

Transformer (TM)

Input serves as attention queries, keys, and values

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ♡ Q ℃ 17/23

L Transformer

Transformer model (TC)

Transformer (TM)

- Input serves as attention queries, keys, and values
- Encoder outputs are the the attention keys and values

・ロト・1日ト・モート・モークへで 17/23

L Transformer

Transformer model (TC)

Transformer (TM)

- Input serves as attention queries, keys, and values
- Encoder outputs are the the attention keys and values

▲□▶ ▲圖▶ ▲ 필▶ ▲ 필▶ ■ ⑦ � ♀ 17/23

 Previous decoding layer outputs are the queries

L Transformer

Transformer model (TC)

Transformer (TM)

- Input serves as attention queries, keys, and values
- Encoder outputs are the the attention keys and values
- Previous decoding layer outputs are the queries
- The decoder produces character probabilities

◆□ ▶ ◆ @ ▶ ◆ E ▶ ◆ E ▶ E ♡ ९ ℃ 17/23

L Transformer

Transformer model (TC)

Transformer (TM)

- Input serves as attention queries, keys, and values
- Encoder outputs are the the attention keys and values
- Previous decoding layer outputs are the queries
- The decoder produces character probabilities
- Rely on the based model proposed by Vaswani et al., 2017

◆□ ▶ ◆ @ ▶ ◆ E ▶ ◆ E ▶ E ♡ ९ ℃ 17/23

L Transformer

Transformer model (TC)

Transformer (TM)

- Input serves as attention queries, keys, and values
- Encoder outputs are the the attention keys and values
- Previous decoding layer outputs are the queries
- The decoder produces character probabilities
- Rely on the based model proposed by Vaswani et al., 2017
 - 6 encoder and 6 decoder layers

L Transformer

Transformer model (TC)

Transformer (TM)

- Input serves as attention queries, keys, and values
- Encoder outputs are the the attention keys and values
- Previous decoding layer outputs are the queries
- The decoder produces character probabilities
 - Rely on the based model proposed by Vaswani et al., 2017
 - 6 encoder and 6 decoder layers
 - > 8 attention heads with dropout with p = 0.1

Deep Lip Reading

External language model

An external character-level language model

- Use a character-level language model during inference
- Recurrent neural network with 4 unidirectional layers of 1024 LSTM cells each

◆□ ▶ ◆ □ ▶ ◆ Ξ ▶ ◆ Ξ ▶ ○ Ξ · · · ○ へ ⁽²⁾ 18/23

Trained to predict one character at a time

Experiments & Results

Two different datasets for performance evaluation

Table 3: Datasets used for trained and test

Dataset	# Words	Туре	Vocabulary	# Utter.	Viewpoint
LRW	489k	single word	500	-	unique
LRS2	2M	sentences	41K	142K	multiple
MV-LRS(w)	1.9M	sentences	480	-	unique
MV-LRS	5M	sentences	30K	430K	unique

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQで 19/23

LRW: Lip Reading in the Wild

LRS2: Lip Reading Sentences 2

Two different corpora to train the language model

Experiments & Results

Two different datasets for performance evaluation

Table 3: Datasets used for trained and test

Dataset	# Words	Туре	Vocabulary	# Utter.	Viewpoint
LRW	489k	single word	500	-	unique
LRS2	2M	sentences	41K	142K	multiple
MV-LRS(w)	1.9M	sentences	480	-	unique
MV-LRS	5M	sentences	30K	430K	unique

LRW: Lip Reading in the Wild

LRS2: Lip Reading Sentences 2

Two different corpora to train the language model

1 transcriptions of the LRS2 pre-train and main train-data $\equiv 2M$ words

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ♡ < ♡ 19/23

Experiments & Results

Two different datasets for performance evaluation

Table 3: Datasets used for trained and test

Dataset	# Words	Туре	Vocabulary	# Utter.	Viewpoint
LRW	489k	single word	500	-	unique
LRS2	2M	sentences	41K	142K	multiple
MV-LRS(w)	1.9M	sentences	480	-	unique
MV-LRS	5M	sentences	30K	430K	unique

LRW: Lip Reading in the Wild

LRS2: Lip Reading Sentences 2

- Two different corpora to train the language model
 - 1 transcriptions of the LRS2 pre-train and main train-data $\equiv 2M$ words

2 full subtitles of LRS2 training set $\equiv 26M$ words

Experiments & Results

Two different datasets for performance evaluation

Table 3: Datasets used for trained and test

Dataset	# Words	Туре	Vocabulary	# Utter.	Viewpoint
LRW	489k	single word	500	-	unique
LRS2	2M	sentences	41K	142K	multiple
MV-LRS(w)	1.9M	sentences	480	-	unique
MV-LRS	5M	sentences	30K	430K	unique

LRW: Lip Reading in the Wild

LRS2: Lip Reading Sentences 2

- Two different corpora to train the language model
 - 1 transcriptions of the LRS2 pre-train and main train-data $\equiv 2M$ words

2 full subtitles of LRS2 training set $\equiv 26M$ words

• Evaluated on LRS2 $\equiv 1,243$ utterances

Experiments & Results

Two different datasets for performance evaluation

Table 3: Datasets used for trained and test

Dataset	# Words	Туре	Vocabulary	# Utter.	Viewpoint
LRW	489k	single word	500	-	unique
LRS2	2M	sentences	41K	142K	multiple
MV-LRS(w)	1.9M	sentences	480	-	unique
MV-LRS	5M	sentences	30K	430K	unique

LRW: Lip Reading in the Wild

LRS2: Lip Reading Sentences 2

- Two different corpora to train the language model
 - 1 transcriptions of the LRS2 pre-train and main train-data $\equiv 2M$ words

2 full subtitles of LRS2 training set $\equiv 26M$ words

- Evaluated on LRS2 $\equiv 1,243$ utterances
- Report character error rates (CER) and word error rates (WER)

Deep Lip Reading

Experiments & Results

Training process includes three stages

- Visual front-end module
- 2 Use vision module to generate visual features for all the training data

・ロト・1日ト・1日ト・1日ト 日 のへで 20/23

3 Sequence processing module

Deep Lip Reading

Experiments & Results

Transformer architecture seems to be good choice

Table 4: Character error rates and word error rates on LRS2 dataset

Net	Method	# p	CER Greedy	CER T2	WER Greedy	WER T1	WER T2	t/b (s)	time
В	MV-WAS [15]	-	-	-	-	70.4%	-	-	-
BL	BLSTM + CTC	67M	40.6%	38.0%	76.5%	62.9%	62.2%	0.76	4.5d
FC-10	$FC \times 10 + CTC$	24M	37.1%	35.0%	69.1%	58.2%	57.1%	0.23	2.4d
FC-15	$FC \times 15 + CTC$	35M	35.3%	33.9%	64.8%	56.3%	55.0%	0.34	3.4d
TM	Transformer	40M	38.6%	34.0%	58.0%	51.2%	50.0%	0.41	13d

lower is better

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = ♡ < ♡ 21/23

Transformer outperforms the other network models

Deep Lip Reading

Experiments & Results

Transformer architecture seems to be good choice

Table 4: Character error rates and word error rates on LRS2 dataset

Net	Method	# p	CER Greedy	CER T2	WER Greedy	WER T1	WER T2	t/b (s)	time
В	MV-WAS [15]	-	-	-	-	70.4%	-	-	-
BL	BLSTM + CTC	67M	40.6%	38.0%	76.5%	62.9%	62.2%	0.76	4.5d
FC-10	$FC \times 10 + CTC$	24M	37.1%	35.0%	69.1%	58.2%	57.1%	0.23	2.4d
FC-15	$FC \times 15 + CTC$	35M	35.3%	33.9%	64.8%	56.3%	55.0%	0.34	3.4d
TM	Transformer	40M	38.6%	34.0%	58.0%	51.2%	50.0%	0.41	13d

lower is better

- Transformer outperforms the other network models
- ► An improvement of 20% over previous state-of-the-art model

Experiments & Results

Transformer architecture seems to be good choice

Table 4: Character error rates and word error rates on LRS2 dataset

Net	Method	# p	CER Greedy	CER T2	WER Greedy	WER T1	WER T2	t/b (s)	time
В	MV-WAS [15]	-	-	-	-	70.4%	-	-	-
BL	BLSTM + CTC	67M	40.6%	38.0%	76.5%	62.9%	62.2%	0.76	4.5d
FC-10	$FC \times 10 + CTC$	24M	37.1%	35.0%	69.1%	58.2%	57.1%	0.23	2.4d
FC-15	$FC \times 15 + CTC$	35M	35.3%	33.9%	64.8%	56.3%	55.0%	0.34	3.4d
TM	Transformer	40M	38.6%	34.0%	58.0%	51.2%	50.0%	0.41	13d

lower is better

- Transformer outperforms the other network models
- ► An improvement of 20% over previous state-of-the-art model
- High computational cost (i.e., 13 days to train the model)

Deep Lip Reading

L Takeaways

Lipreading is a **challenge** problem

Deep Lip Reading

Takeaways

Lipreading is a **challenge** problem

Context information plays an important role

(ロ)、(型)、(E)、(E)、(E)、(Q)()

Deep Lip Reading

Takeaways

Takeaways

- Lipreading is a **challenge** problem
- Context information plays an important role
- Transformer architecture combined with convolutional neural networks enable machine lipreading

◆□▶★舂▶★差▶★差▶ 差 のへの

Deep Lip Reading

L Takeaways

Takeaways

- Lipreading is a challenge problem
- Context information plays an important role
- Transformer architecture combined with convolutional neural networks enable machine lipreading

・ロト 4 回 ト 4 臣 ト 4 臣 ト 臣 の 9 9 22/23

Machine lipreading can outperform human-performance

Deep Lip Reading

L Takeaways

Takeaways

- Lipreading is a **challenge** problem
- Context information plays an important role
- Transformer architecture combined with convolutional neural networks enable machine lipreading

・ロト 4 回 ト 4 臣 ト 4 臣 ト 臣 の 9 9 22/23

- Machine lipreading can outperform human-performance
- Computational cost is still an issue

References

- H. McGurk and J. MacDonald. "Hearing lips and seeing voices". In: Nature 264.5588 (1976), pp. 746–748
- D. J. Lewkowicz and A. M. Hansen-Tift. "Infants deploy selective attention to the mouth of a talking face when learning speech".
 In: National Academy of Sciences 109.5 (2012), pp. 1431–1436
- R. D. Easton and M. Basala. "Perceptual dominance during lipreading". In: *Perception & Psychophysics* 32.6 (1982), pp. 562–570
- A. Vaswani et al. "Attention is all you need". In: NeurIPS. 2017, pp. 5998–6008
- T. Afouras, J. S. Chung, and A. Zisserman. "Deep Lip Reading: a comparison of models and an online application". In: *INTERSPEECH*. 2018

