A computer vision algorithm for identifying images in different lighting

Computer vision has come a long way since Imagenet, a large, open-source data set of labeled images, was released in 2009 for researchers to use to train AI—but images with tricky or bad lighting can still confuse algorithms.

A new paper by researchers from MIT and DeepMind details a process that can identify images in different lighting without having to hand-code rules or train on a huge data set. The process, called a rendered intrinsics network (RIN), automatically separates an image into reflectance, shape, and lighting layers. It then recombines the layers into a reconstruction of the original images.